поклажа О ?узлов, но сравняется с М, если 1 возьмет у М;↓ поклажа М ? узлов, но будет в два раза >О, если возьмет 1 узел у О.↑ Решение.
О + 1 = М - 1 запись первого условия; М = О + 2 следует из первого условия; 2*(О - 1) = М + 1 запись второго условия; 2О - 2 = (О +2) + 1; подстановка выражения для О во второе условие; 2О - О = 2 + 2 + 1 перегруппировка выражения; О = 5 (узлов) поклажа осла; М = 5 + 2 = 7 (узлов) поклажа мула. ответ: 5 узлов тащил осел, 7 узлов тащил мул. Проверка: 5+1 = 7-1; 6=6; Решение отвечает первому условию. 7+1 = 2(5 -1); 8 = 8 Отвечает второму условию.
1). 1 + 1 = 2 (узла) разница в узлах между М и О, так как для равенства у М нужно 1 отнять, а О 1 добавить; 2). 2 + 1 +1 = 4 (узла) будет разница если мул возьмет у О еще один узел, а у того станет на 1 узел меньше; 3). 4 * 2 = 8 (узлов) будет поклажа М с одним "лишним" узлом, взятым у О, так как при этом по условию М будет тащить в два раза больше О. Т.е. разница в 4 узла будет составлять половину его поклажи. 4). 8 - 1 = 7 (узлов) первоначальная поклажа М; 5). 7 - 2 = 5 (узлов) первоначальная поклажа О. ответ: Мул тащит 7 узлов, Осел тащит 5 узлов. Проверка: 5+1 = 7-1; 6=6; 7+1 = 2(5-1); 8 = 8.
Средне-геометрическим двух неотрицательны чисел и называют величину
Если это выражение возвести в квадрат и слева и справа, то мы получим, что:
или просто:
Тогда условие задачи, можно переформулировать так: «произведение двух самых маленьких чисел равно а произведение двух самых больших равно »
Произведение 16 можно составить из разных натруральных чисел только двумя
I.
II.
Поскольку это должны быть минимальные числа, то остальные числа могут быть только больше.
I* В первом случае остальные числа могут быть только больше т.е.:
Но произведение даже
И произведение любых двух чисел, больших, чем каждое – будет, очевидно, больше чем т.е. больше а значит, при выборе минимальных чисел в виде и – подобрать остальные числа невозможно.
II* Во втором случае остальные числа могут быть только больше т.е.:
Рассмотрим разложение на множители числа
На подойдут только числа, большие восьми и не равные друг другу, т.е. и
Таким образом Вася выбрал числа и
В диапазон между и Вася никаких чисел добавить не мог бы, поскольку тогда минимальные числа стали бы другими, и их произведение уже не было бы
Между и никаких натуральных чисел нет.
В диапазон между и Вася тоже никаких чисел добавить не мог бы, поскольку тогда максимальные числа стали бы другими, и их произведение уже не было бы