по свойству диагонали прямоугольного параллелепипеда квадрат диагонали равен сумме квадратов трех его измерений, поэтому
d²=8²+6²+3²; d=64+36+9=109, d=√109/cм/
Площадь полной поверхности равна сумме площадей оснований и площади боковой поверхности. 2*(аb+bc+ac)=2*(48+18+24)=2*180/cм²/
Площадь диагонального сечения- это площадь прямоугольника с со сторонами 10см и 3см, т.к. диагональ основания равна √(6²+8²)=10 /см/, площадь 30 см²
Если в основании лежит прямоугольник со сторонами 8 и 3, площадью диагонального сечения будет √(8²+3²)*6=6√73/см²/, а если в основании стороны 6 и 3, то площадь√(6²+3²)*8=√45*8=24√5/см²/
Проекцией диагонали параллелепипеда будет диагональ основания. т.е. диагональ прямоугольника, лежащего в основании.
Основная функция скобок – менять порядок действий при вычислениях значений числовых выражений. Например, в числовом выражении 5·3+7 сначала будет вычисляться умножение, а потом сложение: 5·3+7=15+7=22. А вот в выражении 5·(3+7) сначала будет вычислено сложение в скобке, и лишь потом умножение: 5·(3+7)=5·10=50.
Однако если мы имеем дело с алгебраическим выражением, содержащим переменную - например таким: 2(x−3) – то вычислить значение в скобке не получается, мешает переменная. Поэтому в таком случае скобки «раскрывают», используя для этого соответствующие правила
2) 36км:3/5части=36*5/3=60км ( составляет весь путь).