Сектор круга является его частью, ограниченной двумя радиусами. Поскольку радиус является неизменным показателем для круга и его сектора, то сам сектор будет зависеть от длины дуги или центрального угла сектора, измеренного в градусах. Зная радиус и угол сектора круга, вычислить площадь сектора круга представляется возможным, разделив площадь самого круга на 360 градусов и умножив на данный угол. S=πr^2 α/〖360〗^° =(r^2 α)/2
Теперь через площадь сектора круга можно найти и длину дуги, разделив удвоенное значение на радиус. После подстановки приведенной для площади формулы сокращается радиус и число π, и остается произведение радиуса на угол сектора круга. p=2S/r=2πr α/〖360〗^° =rα
Сектор круга является его частью, ограниченной двумя радиусами. Поскольку радиус является неизменным показателем для круга и его сектора, то сам сектор будет зависеть от длины дуги или центрального угла сектора, измеренного в градусах. Зная радиус и угол сектора круга, вычислить площадь сектора круга представляется возможным, разделив площадь самого круга на 360 градусов и умножив на данный угол. S=πr^2 α/〖360〗^° =(r^2 α)/2
Теперь через площадь сектора круга можно найти и длину дуги, разделив удвоенное значение на радиус. После подстановки приведенной для площади формулы сокращается радиус и число π, и остается произведение радиуса на угол сектора круга. p=2S/r=2πr α/〖360〗^° =rα
а)сначало ищем производную это 2е^х+9х^2, и подставляем вместо х, х0 получим 2
б) cos 4x-sin 4x и подставляем х0
с)((3х^2)*(x^2+3x+9)) + ((x^3-27)*(2x+3)) и все это делим на (x^2+3x+9)^2 доведи до конца выражения и подставь х чем смогла!!