Сразу скажу, что условие скорей всего неправильное. Для такой задачи треугольник должен был быть равнобедренным. Но если это не так, то я решила по тому условию, которое Вы дали:
Есть 2 варианта решения этой задачи.
1) если стороны, о которых идёт речь - катеты
тогда 1 катет - а, второй - 11а
тогда гипотенуза: корень из (121a^2+a^2) =а*корень из 122
получаем:
a+11a+a*корень из 22 = 144
а*(1+11+корень из 122)=144
a=144/(12+корень из 122) (это одна сторона)
тогда вторая сторона: 144*11/(12+корень из 122)=1584/(12+корень из 122)
третья: (144*корень из 122)/(12+корень из 122)
2) если одна сторона - катет, пусть он будет a, вторая гипотенуза 11а
тогда третья сторона : корень из (121а^2-a^2)=а*(корень из 120)= 2а*корень из 30
составляем уравнение:
a+11a+2a*корень из 30 = 144
12а+2а*корень из 30 = 144
2а(6+корень из 30) = 144
а=144/(2*(6+корень из 30)) = 72/(6+корень из 30)
тогда вторая сторона 72*11/(6+корень из 30)= 792/(6+корень из30)
третья сторона ( 144*корень из30)/(6+корень из 30)
cos2x=cos²x-sin²x, cos²x-sin²x + 3sinx = 2, ,
1-sin²x-sin²x+ 3sinx -2 =0.Пусть sinx=t,тогда sin²x=t² и тогда:-2t²+3t-1=0, 2t²-3t+1=0
D=3²-4·2·1=9-8=1,t₁=(3+1)/2·2=1,
t₂=(3-1)/4=1/2=0,5.Тогда имеем:
sinx=1 , sinx=0.5
x=π/2+2πn x=(-1)ⁿπ/6+ πn,где n∈Z
n=0,x₁= π/2 , x₂= π/6.
n=1,x₁= π/2+2π/2=3π ,x₂= π- π/6=5π/6
ответ: 5π/6
Б) cos2x + 2 = 3cosx
cos2x=cos²x-sin²x, cos²x-sin²x+2-3 cosx=0
2cos²x-1-3cosx+2=0, 2cos²x-3cosx+1=0
Пусть cosx=t,тогда cos²x=t² и имеем
2t²-3t+1=0,D=3²-4·2·1=9-8=1,t₁=(3+1)/2·2=1,t₂=(3-1)/4=1/2=0,5.Тогда имеем:
cosx=1 и cosx=0.5
х= 2πn х=+- π/3+ 2πn
n=-2, х₁=-2π , х= -π/3- 2π=-2 2/3π
ответ: х= -2 2/3π =-8π/3
Укажите наименьшее значение, принадлежащее отрезку{-2,5π;-0,5π}