ответ: А -48
Пошаговое объяснение:
Наибольшее возможное количество очков равно 18 ( команда победила девять остальных , а наименьшее равно 0 ( всем проиграла ) , расположим команды в порядке возрастания набранных очков , числа очков , набранных каждой командой четны и отличаются от соседних не меньше , чем на 2 ( по условию все команды набрали разное количество очков ) , докажем , что десятое место у команды , набравшей 0 очков , действительно , если она набрала не менее 2 очков , тогда команда , занимающая 1 место набрала не менее 2 +2·9 = 20 очков , а это невозможно , команда , занявшая 9 место набрала ровно 2 очка , действительно , если предположить , что она набрала не менее 4 очков , то команда занявшая 1 место наберет не менее 4 +2·8 = 20 очков , а это невозможно , повторяя это рассуждение приходим к единственному возможному распределению команд по набранным очкам :
0 ; 2 ; 4 ; 6 ; 8 ; 10 ; 12 ; 14 ; 16 ; 18
Количество очков , набранных командами , занявшими 1 , 2 и 3 место равно 14 + 16 + 18 = 48
Наибольший общий делитель::
Разложим числа на простые множители и подчеркнем общие множители чисел:
15 = 3 · 5
18 = 2 · 3 · 3
Общие множители чисел: 3
НОД (15; 18) = 3
Наименьшее общее кратное::
Разложим числа на простые множители. Сначала запишем разложение на множители самого большого число, затем меньшее число. Подчеркнем в разложении меньшего числа множители, которые не вошли в разложение наибольшего числа.
18 = 2 · 3 · 3
15 = 3 · 5
Чтобы определить НОК, необходимо недостающие множители (эти множители подчеркнуты) добавить к множителям большего числа и перемножить их:
НОК (15; 18) = 2 · 3 · 3 · 5 = 90
Наибольший общий делитель НОД (15; 18) = 3
Наименьшее общее кратное НОК (15; 18) = 90
Наибольший общий делитель::
Разложим числа на простые множители и подчеркнем общие множители чисел:
600 = 2 · 2 · 2 · 3 · 5 · 5
1075 = 5 · 5 · 43
Общие множители чисел: 5; 5
Чтобы найти НОД чисел, необходимо перемножить их общие множители:
НОД (600; 1075) = 5 · 5 = 25
Наименьшее общее кратное::
Разложим числа на простые множители. Сначала запишем разложение на множители самого большого число, затем меньшее число. Подчеркнем в разложении меньшего числа множители, которые не вошли в разложение наибольшего числа.
1075 = 5 · 5 · 43
600 = 2 · 2 · 2 · 3 · 5 · 5
Чтобы определить НОК, необходимо недостающие множители (эти множители подчеркнуты) добавить к множителям большего числа и перемножить их:
НОК (600; 1075) = 5 · 5 · 43 · 2 · 2 · 2 · 3 = 25800
Наибольший общий делитель НОД (600; 1075) = 25
Наименьшее общее кратное НОК (600; 1075) = 25800
Пошаговое объяснение: