М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
VernerIgor
VernerIgor
03.01.2022 09:38 •  Математика

2. в магазин поступило 30 телевизоров, 5 среди которых имеют скрытые дефекты. наудачу отбираются 2 телевизора для проверки. какова вероятность того, что оба они не имеют дефектов? 3. вероятность безотказной работы двух независимо работающих сигнализаторов равна 0.6 и 0.7. найти вероятность того, что сработают: а) оба сигнализатора, б) хотя бы один сигнализатор. 4. изделия проверяются на стандартность. вероятность того, что изделие стандартно равна 0.8. найти вероятность того, что из двух проверенных изделий только одно стандартно. 5. в экзаменационном билете три вопроса, вероятность ответа на первый вопрос - 0.9; на второй - 0.7; на третий - 0.5. найти вероятность различных оценок. 6. студент знает 20 вопросов из 25-ти. найти вероятность того, что студент знает предложенные ему экзаменатором три вопроса.

👇
Ответ:
nlimel
nlimel
03.01.2022
Задача 2
Вероятность ПЕРВОГО брака = 5/30 = 1/6
и УМНОЖАЕМ на вероятность ВТОРОГО брака = 4/29
и получаем 
Р2 = 1/6*4/29 = 2/87 ~ 0.023 ~ 2.3% -  ОТВЕТ
Задача 3.
0,6 и 0,7 - работают  и  0,4 и 0,3 -  отказ
а) сработают ОБА - событие "И"  - произведение вероятностей.
Ра = 0,4*0,3 =  0,12 = 12%
б) событие "ИЛИ" первый или второй 
Рб = p1*q2 + q1*p2 = 0,6*0,3  + 0,4*0,7 = 0,18 + 0,28 = 0,46  = 46% - ОТВЕТ
Задача 4
Одно из двух - событие "ИЛИ" суммируем
Р4 = 0,8*0,2  + 0,2*0,8 = 2*0,16 = 0,32 =32% -  ОТВЕТ
Задача 6
События "И" три раза
Р6 = 20/25 * 19/24 * 18/23 = 57/115 ~ 0.4956 ~ 49.6% - ОТВЕТ
4,8(66 оценок)
Открыть все ответы
Ответ:
Macsum204
Macsum204
03.01.2022

Пошаговое объяснение:

Пусть X и Y - какие-то множества. Имеет место функция, определённая на множестве X со значениями на множестве Y, если в силу некоторого закона f каждому элементу x∈X ставится в соответствие один и только один элемент y∈Y.

Это записывается в виде

y = f(x).

Другими словами, с функции y = f(x) множество X отображается в множество Y. Поэтому функцию называют также отображением.

Например, авиапассажиры сидят в креслах салона пассажирского самолёта. Пусть X - множество пассажиров, а Y - множество кресел салона. Тогда возникает соответствие f : каждому пассажиру x∈X сопоставляется то кресло y = f(x), в котором он сидит.

Наблюдается, таким образом, простой пример функции, областью определения которой является множество X пассажиров, а областью значений - множество f(X) занимаемых ими кресел. Если заполнены не все кресла Y, то множество значений функции будет подмножеством Y, не совпадающим со всем множеством Y.

Если в кресле находятся два пассажира и (например, мать и ребёнок), то это никак не противоречит определению функции f, которая и , и однозначно ставит в соответствие кресло . При этом такая функция принимает одно и то же значение при разных значениях и аргумента, подобно тому как числовая функция y = f(x) = x² принимает одно и то же значение 9 при x = - 3 и при x = 3.

Если, однако, какому-то пассажиру удастся сесть сразу в два кресла и , то нарушится принцип однозначной определённости значений функции, поэтому такая ситуация не является функциональной в смысле данного выше определения функций, поскольку требуется, чтобы каждому значению x аргумента соответствовало бы одно определённое значение y = f(x) функции.

В математическом анализе часто X обозначают как D (область определения функции), а Y как E (область значений функции) и при этом D и E называют подмножествами R (множества действительных чисел). На сайте есть урок Как найти область определения функции.

Как нетрудно догадаться по названию нашего сайта, он назван так в честь функции от икса или f(x). И это неслучайно. Функции составляют бОльшую часть предметов рассмотрения не только математического анализа, но и дискретной математики, а также широко используются в программировании, где от профессионалов требуется выделять однотипные вычисления в функции.

Пример 1. Даны множества A = {a, b, c, d, e} и L = {l, m, n}. Можно ли между элементами этих множеств установить такое соответствие, чтобы оно было функцией? Если да, то записать это соответствие, указав стрелками, какой элемент какому соответствует.

Решение. Итак, множество A содержит 5 элементов, а множество L - 3 элемента. Если мы поставим стрелки, ведущие от каждого элемента множества L к элементам множества A, то некоторым элементам L будут соответствовать более одного элемента A. Такое соответствие не является функцией по определению. Но если мы проведём стрелки от элементов A к элементам L, то некоторым элементам A будут соответствовать одни и те же элементы L, но при этом каждому элементу A будет соответствовать не более одного элемента L. Такое соответствие не противоречит определение функции, следовательно, ответ на вопрос задания - положительный.

Можно задать, например, такое соответствите между элементами данных множеств, которое будет функцией:

4,7(44 оценок)
Ответ:
89825518635e
89825518635e
03.01.2022

Пошаговое объяснение:

ДАНО: Y = x³/(x-1)

Исследование

1. Область определения: D(х)= R\{1} =  (-∞;1)∪(1;+∞).  

Не допускаем деления на 0 в знаменателе.  

2.Поведение в точке разрыва. LimY(1-)= -∞, LimY(1+)= +∞. Вертикальная асимптота - х = 1. Неустранимый разрыв II-го рода.  

3. Поведение на бесконечности - наклонная асимптота.    

k = lim(+∞)Y(х)/x = х³/(x²+ x) = ∞ - коэффициент наклона.

Наклонной асимптоты  нет.  

4. Нули функции, пересечение с осью ОХ. Y(x) = 0.  

5. Пересечение с осью ОУ. Y(0) = 0  

6. Интервалы знакопостоянства.    

Отрицательна: Y(x)<0 - X∈(0;1).

Положительна: Y>0 - X∈(-∞;0)∪(1;+∞)  

7. Проверка на чётность.  

Функция со сдвигом от осей симметрии  - функция общего вида.

Ни нечётная: Y(-x) ≠ -Y(x) ни чётная:  Y(-x) ≠ Y(x)

8. Поиск экстремумов по первой производной.      

y'(x)=\frac{-x^3}{(x-1)^2}+3*\frac{x^2}{x-1}=\frac{x^2*(2x-3)}{(x-1)^2}=0  

Корни квадратного уравнения. х1 = 0  и х2= 3/2 = 1,5.  

9. Локальные экстремумы.  

Минимум: Y(1,5) = 6.75 , Максимум: Y(0) = 0

10. Интервалы монотонности.    

Возрастает: X∈(1.5;+∞)  

Убывает: Х∈(-∞;1)∪(1;1.5)

11. Поиск перегибов по второй производной.    

y''(x) = 2*x*(x²-3*x+3)/(x-1)² = 0

x = 0  и точка разрыва при Х = 1.      

12. Выпуклая - 'горка' - X∈(0;1).

Вогнутая - 'ложка'- X∈(-∞;0)∪(1;+∞;).  

13. Область значений. E(y) - y∈(-∞;+∞).    

Рисунок с графиком функции в приложении.


Исследовать функцию и построить её график y=x³/x-1 (найти область определения d(f), выяснить чётност
4,4(11 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ