Формально, для графа {\displaystyle G=(V,E)}G=(V,E) и {\displaystyle K={\mathcal {P}}(V^{2})}{\displaystyle K={\mathcal {P}}(V^{2})} — множества всех двухэлементных подмножеств его вершин, дополнение {\displaystyle G'}G' определяется как пара {\displaystyle (V,K\setminus E)}{\displaystyle (V,K\setminus E)} — граф, с исходным набором вершин, и с набором ребёр, полученным из полного графа удалением имевшихся в заданном графе.
Дополнение пустого графа является полным графом, и наоборот. Независимое множество графа является кликой в дополнении графа, и наоборот. Дополнение любого графа без треугольников не содержит клешней.
Используем метод неопределённых коэффициентов.Предположим, что левая часть уравнения разлагается на множители второй степени с целыми коэффициентами. Обозначим один из них через
, другой - через
.
Задача сводится к нахождению p, q, r, s. Тогда
Можно попробовать взять q=4, s=-2, тогда p=2, r=-2, а уравнение может быть представлено в виде:
Сумма корней:
если взять q=-4, s=2, тогда p=-2, r=2, а уравнение может быть представлено в виде:
Сумма корней:
ответ: 2.