Y=x^3-3x^2-1 y'=3x^2-6x=0 3x(x-2)=0 x=0, x=2- стационарные точки. y' (1)= -3, y на интервале (1;2)убывает. значит x=0 точка максимума. x=2 точка минимума. y(0)=-1 наибольшее значение функции. y(2)=8-12-1=-5 наименьшее значение функции.
Четырехугольник, в котором провели диагональ разбивается на два треугольника с общей стороной. Необходимо, чтобы для длин сторон каждого из этих треугольников выполнялось неравенство треугольника (a+b>c, где a,b,c - длины сторон треугольника). Посмотрим, какие длины сторон могут быть у треугольника, если одна из его сторон равна 15. 15<11.5+10 - может быть 10, 11.5, 15 15<11.5+4 - может быть 4, 11.5, 15 15>11.5+2 - такого набора длин сторон быть не может 15>10+4 - такого набора длин сторон быть не может 15>10+2 - такого набора длин сторон быть не может
Рассмотрим первый вариант. На второй треугольник остаются длины 2, 4 и одна из длин сторон первого треугольника, а этого быть не может (2+4<10<11.5<15)
Теперь второй вариант: Остаются 2 и 10. 2+4<10 2+10>11.5 - единственный подходящий вариант. 2+10<15
Диагональ входит в оба треугольника, а значит ее длина 11.5
Четырехугольник, в котором провели диагональ разбивается на два треугольника с общей стороной. Необходимо, чтобы для длин сторон каждого из этих треугольников выполнялось неравенство треугольника (a+b>c, где a,b,c - длины сторон треугольника). Посмотрим, какие длины сторон могут быть у треугольника, если одна из его сторон равна 15. 15<11.5+10 - может быть 10, 11.5, 15 15<11.5+4 - может быть 4, 11.5, 15 15>11.5+2 - такого набора длин сторон быть не может 15>10+4 - такого набора длин сторон быть не может 15>10+2 - такого набора длин сторон быть не может
Рассмотрим первый вариант. На второй треугольник остаются длины 2, 4 и одна из длин сторон первого треугольника, а этого быть не может (2+4<10<11.5<15)
Теперь второй вариант: Остаются 2 и 10. 2+4<10 2+10>11.5 - единственный подходящий вариант. 2+10<15
Диагональ входит в оба треугольника, а значит ее длина 11.5
y'=3x^2-6x=0
3x(x-2)=0
x=0, x=2- стационарные точки.
y' (1)= -3, y на интервале (1;2)убывает. значит x=0 точка максимума. x=2 точка минимума.
y(0)=-1 наибольшее значение функции.
y(2)=8-12-1=-5 наименьшее значение функции.