1) 48 = 2*2*2*2*3 и 84=2*2*3*7 и НОД(48,84)= 2*2*3 = 12
2) 70=2*5*7 и 98=2*7*7 и НОД(70,98)=2*7=14
3) 16 = 2*2*2*2 и 45=3*3*5 и НОД(16,45)=1- делителей нет.
4) 52= 2*2*13 и 78= 2*3*13 и НОД(52,78)=2*13 = 26
5) 44= 2*2*11 и 65=5*13 и НОД(44,65)=1 - делителей нет
6) 72=2*2*2*3*3 и 96=2*2*2*2*2*3 и НОД(72,96)=2*2*2*3 = 24
7) 78=2*3*13 и 117=3*3*13 и 195=3*5*13 и НОД(78,117,195)=39
8) 110=2*5*11 и 154=2*7*11 и 286=2*11*13 и НОД(110,154,286)=22
9) 90=2*3*3*5 и 126=2*3*3*7 и 162=2*3*3*3*3 и НОД(90,126,162)=18.
Подробнее - на -
Дано неравенство: 6x² − x - 5 > 0.
Находим корни квадратного трёхчлена: 6x² − x - 5 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=(-1)^2-4*6*(-5)=1-4*6*(-5)=1-24*(-5)=1-(-24*5)=1-(-120)=1+120=121;
Дискриминант больше 0, уравнение имеет 2 корня:
x1=(√121-(-1))/(2*6)=(11-(-1))/(2*6)=(11+1)/(2*6)=12/(2*6)=12/12=1;
x2=(-√121-(-1))/(2*6)=(-11-(-1))/(2*6)=(-11+1)/(2*6)=-10/(2*6)=-10/12=-(5/6)≈-0.833333.
откуда x1 = 1 и x2 = -(5/6).
Раскладываем левую часть неравенства на множители: 6(x – 1) (x +(5/6)) > 0. Точки -5/6 и 1 разбивают ось X на три промежутка:
ОО⟶Х
-5/6 1
Точки -5/6 и 1 выколоты. Это связано с тем, что решаемое неравенство — строгое (так что x не может равняться -5/6 или 1). Далее определяем знаки левой части неравенства на каждом из промежутков
+ – +
ОО⟶Х
-5/6 1
Получаем: x < -5/6 или x > 1.
13^6*2^6 / 13^5*2^5=
13*2= 26
или
= 26^6 / 26^5 = 26
7^11*9^11 / (63^5)^2=
7^11*9^11 / 63^10 =
7^11*9^11 / 7^10*9^10=
7*9= 63
или
= 63^11 / 63^10 = 63
2^8*3^8 / (6^4)^2=
6^8 / 6^8 =1
12^6 / 3^5*4^5=
12^6 / 12^5 = 12