1 год: Пусть площадь поля, засеянного овсом - х, тогда площадь поля, засеянного пшеницей - 2х. Общая площадь поля - у. 2 год: Площадь поля, засеянного овсом - 2х +20%, или 2х+0,2х; Площадь поля, засеянного пшеницей - х+15%, или х+0,15х. Общая площадь поля - у+11.
Составим систему уравнений:
х+2х=у 2х+0,2х+х+0,15х=у+15.
Подставим во 2е уровнения вместо у выражение: 2х+0,2х+х+0,15х=х+2х+11 Решаем 2х+0,2х+х+0,15х-х-2х=11 0,35х=11 х=11/0,35 х=31,43
Вычислим у: у=х+2х у=31,43+2*31,43 у=94,29 (общая площадь поля в первом году)
Во втором году на 11 га больше, соответственно: 94,29+11=105,29 га - площадь поля, засеянного пшеницей и овсом на следующий год
Решение: Скорость сближения велосипедистов равна: 15-10=5 (км/час) Время сближения: 2 : 5=0,4 (час) Время движения (t) у обоих велосипедистов одинаковое. Первый велосипедист проедет расстояние: S1=15*t Обозначим количество кругов у первого велосипедиста за (n1) При количестве кругов n1, расстояние пройденное первым велосипедистом составит: S1=5*0,4*n1=2n1 Приравняем оба выражения S1 15t=2n1 Второй велосипедист проедет расстояние равное: S2=10*t Обозначим количество кругов у второго велосипедиста за (n2) При количестве кругов n2, расстояние пройденное вторым велосипедистом составит: S2=5*0,4*n2=2n2 Приравняем оба выражения S2 10t=2n2 Получилось два уравнения: 15t=2n1 10t=2n2 Разделим первое уравнение на второе, получим: 15t/10t=2n1/2n2 15/10=n1/n2 Делаем вывод, что минимальное количество кругов до встречи равно: n1=15 n2=10 Из первого уравнения 15t=2n1 найдём значение (t) t=2n1/15 подставим в это выражение n1=15 t=2*15/15=2 (часа)
ответ: Первый велосипедист впервые догонит второго велосипедиста через 2 часа.
ответ: в классе 12 девочек.