М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Klot0708
Klot0708
10.02.2023 01:59 •  Математика

А+30=70 ,x-7=9, 11-с=4 уравнения надо решить

👇
Ответ:
Андртян
Андртян
10.02.2023
а+30=70 ,
а=70-30
а=40

x-7=9,
х=9+7
х=16

11-с=4 
с=11-4
с=7
4,6(24 оценок)
Ответ:
Кактус860
Кактус860
10.02.2023
А+30=70
а=70-30
а=40
ответ:40

х-7=9
х=9+7
х=16
ответ:16

11-с=4
с=11-3
с=8
ответ:8
4,7(82 оценок)
Открыть все ответы
Ответ:
yuraseven77
yuraseven77
10.02.2023
7:2=3,5 (боч.) - количество мёда в 7 "половинках" 7+3,5=10,5 (боч.) - общее количество мёда 10,5:3=3,5 (боч.) - мёда должен получить каждый Каждый взял по 7 бочонков и мёда, равного по объёму 3,5 (3 с половиной) бочонкам. Надо представить 3,5 в виде суммы, состоящей из семи слагаемых, причём слагаемыми могут быть числа 1, 0,5 и 0, где 1 - полный бочонок мёда, 0,5 - полбочонка мёда, 0 - пустой бочонок 3,5=1+1+1+0,5+0+0+0 3,5=1+0,5+0,5+0,5+0,5+0,5+0 3,5=1+1+1+0,5+0+0+0 1-ый вариант: двое взяли по 3 полных, по 1 "половинке" и по 3 пустых бочонка; третий взял 1 полный, 5 "половинок" и 1 пустой бочонок. 3,5=1+1+0,5+0,5+0,5+0+0 3,5=1+1+1+0,5+0+0+0 3,5=1+1+0,5+0,5+0,5+0+0 2-ой вариант: двое взяли по 2 полных, по 3 "половинки" и по 2 пустых бочонка; третий взял 3 полный, 1 "половинку" и 3 пустых бочонка.
4,6(48 оценок)
Ответ:
весна37
весна37
10.02.2023
Пусть A - сумма, которую взяли в банке. q - разность остатков долга за июль текущего года и июль предыдущего. Смоделируем ситуацию:
Годом будем считать промежуток с начала ИЮНЯ текущего календарного года по конец ИЮЛЯ следующего календарного года. Таким образом, в начале 16-го года его долг составит 0 млн. рублей.
1й год:
июль - A,
январь - A(1+x/100)
2й год:
июль - (A-q), заплатил A(1+x/100) - (A-q) = A(x/100)+q
январь - (A-q)(1+x/100)
3й год:
июль - (A-2q), заплатил (A-q)(1+x/100) - (A-2q) = (A-q)(x/100)+q
январь - (A-2q)(1+x/100)
...
15й год:
июль - (A-14q), заплатил (A-13q)(1+x/100) - (A-14q) = (A-13q)(x/100)+q
январь - (A-14q)(1+x/100)
16й год:
июль - отдал последние гроши из своего бедного кармана, остаток долга - (A-15q) = 0, заплатил (A-14q)(1+x/100) - (A-15q) = (A-14q)(x/100)+q.
Очевидно, что с каждым годом ему платить приходилось все меньше и меньше.На втором году заплатил A(x/100)+q, а на 16-м: (A-14q)(x/100)+q.
Теперь смотрим на условия задачи.
1) A(x/100)+q <=1.9
2) (A-14q)(x/100)+q >= 0.5
3) A = 6
4) (A-15q) = 0, откуда q = A/15.
Объединим все, что есть:
a) q = 6/15=0.4
б) 6(x/100)+0.4 <= 1.9
x/100<=0.25
x<=25
в) (6-14*0.4)(x/100)+0.4 >= 0.5
0.4(x/100)>=0.1
x>=25.
Таким образом, получили уже упрощенную систему неравенств для x: x<=25 и x>=25, единственным решением которой является x=25.
4,7(34 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ