М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ROLFRUTIN
ROLFRUTIN
29.04.2021 13:54 •  Математика

Познакомьтесь с некоторыми пословицами, собранными в. и. далем о пятнице: «кто в пятницу дело начинает, у того оно будет пятиться», «по пятницам мужики не пашут, а бабы не прядут», «кто в пятницу прядет, святым родителям костыркой глаза запорашивает». какой смысл заключен в них? какое они могли иметь отношение к богине макоши?

👇
Ответ:
vasilevasanka
vasilevasanka
29.04.2021
Скорей всего она любила пятницу...) Эти пословицы значат то,что кто делает все дела в пятницу, у него ничего не получается. что в пятницу надо отдыхать
4,6(37 оценок)
Открыть все ответы
Ответ:
vitaliygrg
vitaliygrg
29.04.2021
Пусть члены жюри как-то сели за стол. Занумеруем их по часовой стрелке, начиная от Николая Николаевича. Затем удалим всех, кроме Николая Николаевича, из-за стола и будем запускать их обратно в порядке их номеров. Рассадка при такой операции не изменится. Таким образом, можно считать, что члены жюри заходят в таком порядке, что занимают места за столом по часовой стрелке.   Занумеруем места за столом по часовой стрелке так, чтобы место, где должен был сесть Николай Николаевич, имело номер 12 (т.е. Николай Николаевич сел на первое место).   Пусть в некоторый момент за столом заняты k мест и k < 11. Тогда в этот момент никто из тех, кто должен занять места от k + 1 до 11, еще не пришел. А всего еще не пришло 12 – k членов жюри, значит еще не пришел только один человек, чье место уже занято. Следовательно, на место номер k + 1 может сесть один из двух еще не пришедших членов жюри: либо тот, чье это место, либо тот, чье место уже занято.   Таким образом, каждое место с номером от 2 до 11 может быть занято двумя а место номер 12 одним Следовательно, всего может возникнуть 2^{10} рассадки членов жюри.    
4,7(1 оценок)
Ответ:
BEAR58
BEAR58
29.04.2021

1) 2

2) 5

3) 13

Пошаговое объяснение:

Обозначим некоторое утверждение в формате x.y, где x — номер строки, y — номер утверждения в этой строке.

Пусть утверждение 3.1 верно. Тогда для утверждения 1.1 будет выполняться равенство 3a = 20, что невозможно, так как 20 не делится на 3, а для утверждения 1.2 будет выполняться a³ = 56, что также невозможно, поскольку 56 не является кубом натурального числа. Значит, в первой строке оба утверждения ложны, чего быть не может. Следовательно, изначальное предположение неверное. Тогда верно утверждение 3.2.

Утверждение 1.2 верным быть не может, поскольку 56 = 2·2·2·7 — в его разложение входит 4 простых числа. Значит, верно утверждение 1.1.

Утверждение 2.2 верным быть не может, так как если наименьшее из чисел 3 и они все простые, то все числа нечётные. Сумма трёх нечётных чисел есть число нечётное, а 20 — число чётное. Значит, верно утверждение 2.1.

Действительно, пусть a = 2, b = 5, c = 13. a + b + c = 20, наибольшее число равно 13, все числа простые.

4,6(55 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ