М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Кей121
Кей121
09.02.2021 22:29 •  Математика

При каких значениях а имеет смысл выражение: √12-3а+√а+2

👇
Ответ:
Zharkov12345
Zharkov12345
09.02.2021
Если имеется в виду то,что пишется, то
√12-3а+√а+2 имеет смысл при а≥0

Если имеется в виду 
√(12-3а)+√(а+2), то имеет смысл
при
12-3а≥0 и 
а+2≥0

3а≤12
а≥-2

а≤4
а≥-2

а∈[-2;4]
4,6(42 оценок)
Ответ:
leraanufrieva
leraanufrieva
09.02.2021
При а принадлежащем множеству [-2;4]
4,6(33 оценок)
Открыть все ответы
Ответ:
Lenokguryhr
Lenokguryhr
09.02.2021

Биномиальным называют распределение количества «успехов» в последовательности из n независимых случайных экспериментов, таких, что вероятность «успеха» в каждом из них постоянна и равна p.

Иначе говоря, пусть происходит n независимых испытаний, в каждом из которых событие может появится с одной и той же вероятностью p. Тогда случайная величина X - количество испытаний, в которых появилось событие, имеет биномиальное распределение вероятностей.

Она может принимать целые значения от 0 (событие не произошло ни разу) до n (событие произошло во всех испытаниях). Формула для вычисления соответствующих вероятностей - уже известная нам формула Бернулли для схемы повторных независимых испытаний:

P(X=k)=Ckn⋅pk⋅(1−p)n−k,k=0,1,2,...,n.

Для биномиального распределения известны готовые формулы для математического ожидания и дисперсии:

M(X)=np,D(X)=npq,σ(X)=npq−−−√.

Пошаговое объяснение:

4,6(10 оценок)
Ответ:
ambarik
ambarik
09.02.2021

Биномиальным называют распределение количества «успехов» в последовательности из n независимых случайных экспериментов, таких, что вероятность «успеха» в каждом из них постоянна и равна p.

Иначе говоря, пусть происходит n независимых испытаний, в каждом из которых событие может появится с одной и той же вероятностью p. Тогда случайная величина X - количество испытаний, в которых появилось событие, имеет биномиальное распределение вероятностей.

Она может принимать целые значения от 0 (событие не произошло ни разу) до n (событие произошло во всех испытаниях). Формула для вычисления соответствующих вероятностей - уже известная нам формула Бернулли для схемы повторных независимых испытаний:

P(X=k)=Ckn⋅pk⋅(1−p)n−k,k=0,1,2,...,n.

Для биномиального распределения известны готовые формулы для математического ожидания и дисперсии:

M(X)=np,D(X)=npq,σ(X)=npq−−−√.

Пошаговое объяснение:

4,6(19 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ