Если ранее вы ознакомились с историей древнего мира и зарубежных средних веков, то сейчас вы приступаете к изучению истории России. История России является частью истории человечества.
Курс истории России рассматривает не только историю русского народа, но и ближайших их соседей – восточных славян - и других народов. История нашей Родины не менее драматична и интересна, чем история народов Европа и Азии, она нам очень близка, так как её участниками являются наши далекие предки.
Обратите внимание на карту – площадь современной России более 17 млн. кв. км, она расположена на северо-востоке Евразии.
Россия является крупнейшей страной в мире.
2 Что изучает история Отечества.
Выскажите свое мнение по вопросам:
Зачем надо изучать историю?Для чего надо знать историю своей Родины?Рекомендуется ознакомить учащихся с мнением по данным вопросам великих людей разных исторических эпох.
Цицерон : «История – это учительница жизни. Потому что не знать того, что было до твоего рождения, означает навсегда оставаться ребенком»
Ключевский В.А.: «История – это фонарь в будущее, который светит нам из Пушкин А.С.: « Гордиться славою своих предков не только можно, но и должно; не уважать оной – есть постыдное малодушие».
Лихачев Д.С.: « Любовь к Родине дает смысл жизни, превращает жизнь из прозябания в осмысленное существование. Если вы любите свою страну, вы не можете не беречь своей истории , не можете не беречь памятников
К аварийно химически опасным веществам, обладающим удушающим и общеядовитым действием, относят концентрированные кислоты (азотная, уксусная, серная и др.), оксиды азота, сернистый ангидрид, сероводород.
Концентрированные кислоты, оксиды азота, сернистый ангидрид вызвать токсический отек легких и нарушить энергетический обмен. Эти соединения обладают сильнейшим прижигающим действием, что затрудняет диагностику и оказание медицинской пострадавшим. При вдыхании паров этих веществ происходит раздражение глаз и верхних дыхательных путей (слезотечение, насморк, кашель, затруднение дыхания).
Возможна рефлекторная остановка дыхания. После скрытого периода (от 2 до 24 ч) развивается токсическая пневмония или токсический отек легких. При попадании веществ в глаза и на кожу образуются химические ожоги.
При оказании первой медицинской надо надеть на пострадавшего противогаз и вывести (вынести) его из опасной зоны. В случае остановки дыхания провести искусственную вентиляцию легких, затем надо пострадавшему принять полусидячее положение, промыть ему глаза и кожные покровы водой прополоскать рот. Промывание желудка и искусственное вызывание рвоты нежелательны из-за возможного повторного ожога пищевода. Нельзя давать пострадавшему слабительное и щелочные растворы. При попадании ядовитого вещества на кожу и слизистые оболочки надо промыть пораженные места и переодеть пострадавшего. При угнетении дыхания следует провести ингаляцию кислородом и искусственную вентиляцию легких. Пострадавшего надо доставить в лечебное учреждение.
При отравлении сероводородом пострадавший ощущает раздражение глаз и верхних дыхательных путей, головную боль, тошноту, он испытывает возбуждение, иногда наблюдается рвота. В тяжелых случаях могут последовать кома, судороги, токсический отек легких.
Оказывая первую медицинскую надо надеть на пострадавшего противогаз и вынести (вывести) его из опасной зоны. В случае остановки дыхания следует провести искусственную вентиляцию легких. Затем необходимо промыть глаза и кожные покровы пострадавшего водой ему прополоскать рот и быстро доставить в лечебное учреждение.
Объяснение:
1) скорее всего так... (e^x + e^(x+y))dx - e^y dy=0 ,
тогда-
Д.У. с разделяющимися переменными.
(e^x )dx = [(e^y )/(1+ e^y)]dy
∫(e^x )dx =∫[(e^y )/(1+ e^y)]dy
e^x =ln(1+ e^y)+c
2)
y'+ y - e^(2x) =0 y'+ y = e^(2x) линейное Д.У
решим методом Бернулли , полагаем y=uv,где u=u(x)≠0, v=v(x)≠0,
y¹=u¹v+uv¹ , подставим в исходное уравнение:
u¹v+uv¹+uv = e^(2x )
рассмотрим
uv¹+uv =0
u¹v = e^(2x)
решаем первое уравнение системы
⇔u(dv/dx+v) =0 ⇔(dv/dx+v) =0 ⇔dv/dx=-v⇔dv/v=-dx ⇔lnv=-x
⇔ v=e^(-x)
и подставим во второе уравнение системы
u¹ e^(-x)= e^(2x) ⇔(du/dx)e^(-x)= e^(2x ) ⇔(du/dx)= e^(3x )⇔
u=(1/3)e^(3x )+c
y=uv ⇔ u=(1/3)e^(3x )+c v=e^(-x)
ответ:
y=[(1/3)e^(3x )+c]·e^(-x)
3)y" - 3y' + 2y =0
линейное однородное с постоянными коэффициентами.
характеристическое уравнение
к²- 3к' + 2 =0 решаем: к1=2 к2=1.
Фундаментальная система решений: y1=e^(2x) y2=e^(x)
общее решение
у=С1·y1+С2·y2=С1·e^(2x) + С2·e^(x)
ответ: у=С1·e^(2x) + С2·e^(x)
4) y"= cos (x/2)
y"=d(dy/dx)/dx ⇔d(dy/dx)/dx= cos x/2 ⇔∫d(dy/dx)= ∫(cos (x/2 ))dx⇔
dy/dx=2sin(x/2 )+C1 ⇔ ∫dy=∫(2sin(x/2 )+C1) dx ⇔
y= - 4cos (x/2 )+C1x+C2
ответ:
y= - 4cos (x/2 )+C1x+C2