заявленный и в приведённом условии. Далее порассуждаем практически:
;
;
;
;
;
;
производная
больше производной
, т.е. дальше левая часть уравнения, растёт быстрее, чем правая, а значит, других корней при
быть не может.
левая часть уравнения положительна, а правая отрицательна, так что других корней при
быть не может.
, так как при сравнении двух непрерывных функций на этом интервале меняется знак.
где
то:
Это число, очевидно иррационально, что легко доказать от обратного методом Евклида. Однако справа должно быть рациональное число
а значит, мы пришли к противоречию. Таким образом, второе решение иррационально.
по определению дающая решение, т.е. являющаяся обратной, к функции
Функция вводится аналогично, скажем, функции
являющейся решением уравнения
но в отличие от арктангенса, функция Ламберта используется намного реже в прикладных задачах (в основном в задачах теплопроводности), и поэтому – менее широко известна. Функция вводится на расширенной комплексной плоскости, т.е. алгебраически, а не арифметически, а значит по определению, может быть многозначной, и является таковой при отрицательных значениях аргумента
хотя нам достаточно будет знать лишь её действительные значения, которых при отрицательных аргументах всегда два. Вид действительных ветвей функции Ламберта представлен на приложенном изображении.
;
;
;
;
тогда:
отсюда через функцию Ламберта:
;
равна:
;
искомое значение и вычисляя
добиваясь его равенства 
как раз и даст значение
, что можно легко проверить подстановкой.
;
;
;
;
Решим уравнение и найдем его корни.
0,6 * (х - 2) + 4,6 = 0,4 * (7 + х);
0.6 * x - 0.6 * 2 + 4.6 = 0.4 * 7 + 0.4 * x;
0.6 * x - 1.2 + 4.6 = 2.8 + 0.4 * x;
0.6 * x + 3.4 = 2.8 + 0.4 * x;
1)
Известные значения перенесем на одну сторону, а неизвестные значения на противоположную сторону. При переносе значений, их знаки меняются на противоположный знак. То есть получаем:
0.6 * x - 0.4 * x = 2.8 - 3.4;
0.2 * x = -0.6;
x = -0.6/0.2;
x = -6/2;
x = -3;
ответ: х = -3.
Пошаговое объяснение: