138π см²
Пошаговое объяснение:
Построим равнобедренную трапецию ABCD с высотой CF (см. Рис. 1).
Согласно условию: AD=18 см, BC=10 см, CF=3 см. Для дальнейших вычислений нам понадобится длина боковой стороны трапеции AB=CD.
Т.к. трапеция равнобедренная, то FD = (AD-BC):2 = 4 см.
ΔCDF - прямоугольный с катетами CF=3 см, FD=4 см, значит он египетский, и его гипотенуза CD=5 см.
При вращении такой трапеции вокруг короткого основания образуется цилиндр с равными осевыми конусообразными выемками с обеих сторон (См. рис. 1.2, 2.1, 2.2). Радиус такого цилиндра равен высоте трапеции R=CF=3 см, а высота цилиндра равна длинному основанию трапеции H=AD=18 см.
Образующей конуса-выемки является боковая сторона трапеции L=CD=5 см, радиус равен радиусу цилиндра R=3 см.
Искомая площадь полной поверхности фигуры вращения состоит из площади боковой поверхности цилиндра и двух боковых поверхностей конусов-выемок.
Площадь боковой поверхности цилиндра: .
Площадь боковой поверхности конуса-выемки:
Площадь полной поверхности:
Пошаговое объяснение:
10.28 . ∫ dx/e²ˣ⁻¹ = ∫ e⁻²ˣ⁺¹ dx = - 1/2 * e⁻²ˣ⁺¹ + C .
10.29 . ∫ ⁵√( 3x + 2 )dx = ∫ ( 3x + 2 )^( 1/5 )dx = 6/5 *1/3 *( 3x + 2 )^( 6/5 ) +
+ C = 0,4 ⁵√( 3x + 2 )⁶ + C = 0,4 ( 3x + 2 )⁵√( 3x + 2 ) + C .
10.30 . ∫ dx/( 4x + 3 )⁵ = ∫ ( 4x + 3 )⁻⁵dx = ( 4x + 3 )⁻⁴/( - 4 ) * 1/4 + C =
= - 1/16( 4x + 3 )⁴ + C .
10.31 . ∫ dx/( 3x + 1 ) = 1/3 * ln | 3x + 1 | + C .
10.32 . ∫ dx/√ ( 2 - x ) = - 1/1 * ( 2 - x )^( 1/2 ) : ( 1/2) = - 2 √( 2 - x ) + C .
10.33 . ∫ dx/√ ( x² + 2 ) = ∫ d ( x² + 2 )/2√( x² + 2 ) = 1/2 ∫( x² + 2 )^(- 1/2 ) x
x d ( x² + 2 ) = 1/2 * 2√( x² + 2 ) + C = √( x² + 2 ) + C
Смотри в приложении: