Y=x²+3x Лучше начать с построения чертежа, тогда легче понять о какой фигуре идёт речь. В нашем случае это парабола, ветви которой направлены вверх. Необходимо найти площадь фигуры, которая расположена ниже оси ОХ (см. чертёж во вложении) на отрезке [-3;0]. Вообще точки пересечения параболы и оси ОХ можно найти аналитически, т.е. решить уравнение x²+3x=0 x(x+3)=0 x=0 x=-3 Значит нижний предел интегрирования а=-3, а верхний предел интегрирования b=-3 Так как фигура расположена под осью ОХ, её площадь определяется по формуле ед².
ответ: Могло. Решение. Пусть начальная цена была 1 р. 10 коп. Тогда на распродаже ложка стоила 10 коп., а вилка — 11 коп. Замечание. Пусть x — начальная цена в копейках. Тогда x должно быть больше 100 (поскольку цена ложки на распродаже должна быть положительной), делиться на 10 (поскольку цена вилки на распродаже должна выражаться целым положительным числом копеек) и удовлетворять неравенству x–100 < x/10 ⇔ x < 111 1/9. Таким образом, x = 110 — единственная цена, удовлетворяющая всем перечисленным условиям.
: Могло. Решение. Пусть начальная цена была 1 р. 10 коп. Тогда на распродаже ложка стоила 10 коп., а вилка — 11 коп. Замечание. Пусть x — начальная цена в копейках. Тогда x должно быть больше 100 (поскольку цена ложки на распродаже должна быть положительной), делиться на 10 (поскольку цена вилки на распродаже должна выражаться целым положительным числом копеек) и удовлетворять неравенству x–100 < x/10 ⇔ x < 111 1/9. Таким образом, x = 110 — единственная цена, удовлетворяющая всем перечисленным условиям
Лучше начать с построения чертежа, тогда легче понять о какой фигуре идёт речь. В нашем случае это парабола, ветви которой направлены вверх. Необходимо найти площадь фигуры, которая расположена ниже оси ОХ (см. чертёж во вложении) на отрезке [-3;0]. Вообще точки пересечения параболы и оси ОХ можно найти аналитически, т.е. решить уравнение
x²+3x=0
x(x+3)=0
x=0 x=-3
Значит нижний предел интегрирования а=-3, а верхний предел интегрирования b=-3
Так как фигура расположена под осью ОХ, её площадь определяется по формуле
ответ: S=4,5 ед²