2) KL² =NL*LM² NL =x LM=MN -NL =25 -x;
144 =x(25 -x) ;
x² -25x +144 =0;
x = 9
x=16 (по рисунку NL < LM )
ΔKLN : NK² =NL²+ LK²
NK =3*5 =15 (9 =3*3; 12=3*4; 3*5=15)..
ΔKLM : KM² =KL² +LM²
KM =4*5 =20 (12 =4*3; 16=4*4 ;4*5 =20)
3) KE² =EM*EL
EM =KE²/EL =6²/8 =9/2 =4,5
KL² =KE² +EL² =6² +8² =100 =10²
KL =10.
KL² =ML*EL
ML =KL²/EL =100/8 =12,5.;
( 5/EM = ML --EL =12,5 -8 =4,5)
MK² =ML*ME;
MK² =12,5*4,5 =25*0,5*0,5*9;
MK =5*0,5*3 =7,5.
4) MN² =MK² +KN² =5² +²12² =25 +144 =169 =13²;
MN =13;
MK² =MN*MT ;
MT =MK²/MN=5²/13 =25/13.
NT =MN -MT =13 -25/13 =144/13;
KT² =MT*NT=25/13*144/13 =(5*12/13)² ;
KT =5*12/13 =60/13.
или из ΔMTK :
KT² =MK² -MT²² =5² -(25/13)² =(5 -25/13)(5+25/13) =40/13*90/13 =(2*3*10/13)²;
KT =2*3*10/13 =60/13 .
ответ: удастся.
пошаговое объяснение: собаке требуется 2017 чисел, значит из 2019 как минимум 2017 таких чисел, которые после добавления или отнятия единицы становятся кратны 4, так как не существует чисел которые при любой из этих операций кратны 4 собака в лучшем случае может взять 1010 кратных при +1 и 1009 кратных при -1(или наоборот). и так, даже если брать по 2 числа(один кратных при +1, второй при -1) собака получит максимум 1009 кратных 4, но не больше(если у свиньи есть мозги конечно).
В правильной четырехугольной призме площадь основания равна 10, а боковое ребро 3√10. Найдите расстояние между стороной основания и диагональю призмы, не пересекающейся с ней.
––––––––––––––––––––––––––––
На рисунке, данном в приложении, сторона основания и диагональ призмы, не пересекающаяся с ней – прямые АД и А1С. Они скрещивающиеся.
Определение: Расстояние между скрещивающимися прямыми – это расстояние между одной из скрещивающихся прямых и параллельной ей плоскостью, проходящей через другую прямую.
Через диагональ призмы А1С и сторону ВС проведем плоскость ВСД1А1. Плоскость содержит ВС║ АД, значит, она параллельна АД ( по т. о параллельности прямой и плоскости).
Длина перпендикуляра, опущенного на эту плоскость из любой точки на прямой АД – есть искомое расстояние.
Отметим на АД точку М.
Проведем отрезок МК║ДД1 и отрезок МН║ ДС. Они будут взаимно перпендикулярны. Соединив К и Н, получим прямоугольный треугольник КМН, в котором гипотенуза КН лежит в плоскости ВА1Д1Д. Следовательно, высота МО этого треугольника – расстояние между АД и плоскостью, содержащей диагональ призмы.
По т.Пифагора найдем КН.
КН=СД1, МН=ДС, КМ=ДД1
КН=√(KM²+MH²)=√190
S ∆ CДД1=СД•ДД1:2=10√10):2
S ∆ CДД1=МО•КН:2
МО=2 S ∆СДД1:КН=10√10):√190=10/√19 - искомое расстояние.
Тот же результат получим, если из прямого угла Д грани ДСС1Д1 опустим перпендикуляр на СД1 или из А – на ВА1, т.к., если прямая параллельна плоскости, то все точки этой прямой равноудалены от той плоскости.