Пусть ABC' — произвольный треугольник. Проведем через вершину B прямую, параллельную прямой AC (такая прямая называется прямой Евклида) . Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны прямой BC.Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD.Сумма всех трех углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Теорема доказана.
Пошаговое объяснение:
Если а≠0, тогда разделим на а правую и левую часть уравнения.
x²-6x+2+3/a=0,
получили приведенное квадратное уравнение, для которого справедлива теорема Виета:
x1+x2=6
x1*x2=2+3/a
(x1+x2)²-2x1*x2=26
36-2*(2+3/a)=26
36-4-6/a=26
6-6/a=0
(a-1)/a=0
a=1
Заметим, что при а=1 уравнение имеет корни.
ответ: 1