Определённому интегралу геометрически соответствует площадь некоторой фигуры. Для начала лучше начертить чертёж, по нему можно найти точки пересечения линий. Хотя можно найти их и по другому. Решаем уравнение: -x²+4x-1=-x-1 -x²+4x-1+x+1=0 -x²+5x=0 x(5-x)=0 x=0 5-x=0 x=5 Нашли верхний 5 и нижний 0 пределы интегрирования. Если на отрезке [a;b] некоторая функция f(x) больше или равна некоторой функции g(x), то площадь фигуры, ограниченной графиками данных функций и прямыми х=а и x=b, можно найти по формуле: В нашем примере парабола расположена выше прямой -x-1
Определённому интегралу геометрически соответствует площадь некоторой фигуры. Для начала лучше начертить чертёж, по нему можно найти точки пересечения линий. Хотя можно найти их и по другому. Решаем уравнение: -x²+4x-1=-x-1 -x²+4x-1+x+1=0 -x²+5x=0 x(5-x)=0 x=0 5-x=0 x=5 Нашли верхний 5 и нижний 0 пределы интегрирования. Если на отрезке [a;b] некоторая функция f(x) больше или равна некоторой функции g(x), то площадь фигуры, ограниченной графиками данных функций и прямыми х=а и x=b, можно найти по формуле: В нашем примере парабола расположена выше прямой -x-1
Пошаговое объяснение:
Окончательный ответ:
x ∈ [-7; 2) ∪ (2; 11].
Целые решения: -7; -6; -5; -4; -3; -2; -1; 0; 1; 3; 4; 5; 6; 7; 8; 9; 10; 11.
Всего: 18.
ответ: 18