М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
muroslavka2003
muroslavka2003
19.08.2022 16:15 •  Математика

Выражение. пятая степень корня n в 4 степени / 8m в 3 степени знак разделить пятая степень корня 4m во 2 степени/ n. если можно подробное решение данного примера, за ранее . корень кубический 16ab в 12 степени знак разделить корень кубический 2а в 4 степени b в 9 степени. если можно подробное решение данного примера, за ранее . корень в пятой степени 8с во 2 степени/d знак разделить корень в пятой степени d в 9 степени/ 4с в 3 степени. если можно подробное решение данного примера, за ранее . 1,4а в степени 1/7 знак разделить 2а в степени 8/7. если можно подробное решение данного примера, за ранее . (b в степени 5/6) в 3 степени * 4 степень корня b во второй степени, b> 0. если можно подробное решение данного примера, за ранее .

👇
Ответ:
kokoulina68
kokoulina68
19.08.2022
A/b : c/d = ad/bc ;    (u^p)^q = u^(pq)
(n^4)^5 / (8m)³ : (4m²)^5 / n = [n^(4·5) · n] / {[(2³)³·m³] ·[(2²)^5·(m²)^5] =
       = (n^20 · n) /( 2^9 · 2^10 · m³ · m^10) = 
       = n^21 / (2^19 · m^13

(∛16ab)^12 / (∛[(2a)^4·b^9] =
         =(2^4·ab)^(1/3·12) / [(2^4)^(1/3) ·(a^4)^(1/3) · b^(9·1/3)] = 
                             (2^4)^1/3  сокращаются 
         = (a^4 · b^4)/ (a^(4/3) · b³ =
         = a^(4-4/3) · b^(4-3) = a^(8/3) · b =
         = (∛a)^8 · b
  Дальше   решите  сами:  >  времени  теряю  для  разбора что  написано   ,  чем  для  решения!
   
4,8(62 оценок)
Открыть все ответы
Ответ:
LAMuK
LAMuK
19.08.2022

2 4

Объяснение:

1) Четырехугольник является параллелограммом по определению, если у него противолежащие стороны параллельны, то есть лежат на параллельных прямых.

ABCD — параллелограмм, если

AB ∥ CD, AD  ∥ BC.

Для доказательства параллельности прямых используют один из признаков параллельности прямых, чаще всего — через внутренние накрест лежащие углы. Для доказательства равенства внутренних накрест лежащих углов можно доказать равенство пары треугольников.

Например, это могут быть пары треугольников

1) ABC и CDA,

2) BCD и DAB,

3) AOD и COB,

4) AOB и COD.

2) Четырехугольник является параллелограммом, если у него диагонали в точке пересечения делятся пополам.

Чтобы использовать этот признак параллелограмма, надо сначала доказать, что AO=OC, BO=OD.

3) Четырехугольник является параллелограммом, если у него противолежащие стороны параллельны и равны.

Чтобы использовать этот признак параллелограмма, надо сначала доказать, что AD=BC и AD ∥ BC (либо AB=CD и AB ∥ CD).

Для этого можно доказать равенство одной из тех же пар треугольников.

4) Четырехугольник — параллелограмм, если у него противоположные стороны попарно равны.

Чтобы воспользоваться этим признаком параллелограмма, нужно предварительно доказать, что AD=BC и AB=CD.

Для этого доказываем равенство треугольников ABC и CDA или BCD и DAB.

Это — четыре основных доказательства того, что некоторый четырехугольник — параллелограмм. Существуют и другие доказательства. Например, четырехугольник — параллелограмм, если сумма квадратов его диагоналей равна сумме квадрату сторон. Но, чтобы воспользоваться дополнительными признаками, надо их сначала доказать.

Доказательство с векторов или координат также опирается на определение и признаки параллелограмма, но проводится иначе. Об этом речь будет вестись в темах, посвященных векторам и декартовым координатам.

4,7(86 оценок)
Ответ:
invation
invation
19.08.2022
1. Что называется объемом понятия? Приведите пример трех объектов, принадлежащих объему понятия "треугольник" и трех объектов, не принадлежащих объему данного понятия. 2. Назовите понятие, которое является родовым по отношению к данным: подосиновики, опята, сыроежки. 3. Что называется определением понятия? 4. Какие виды определений понятий чаще всего применяются при формировании у дошкольников начальных математических представлений? Приведите пример. 5. Проведите логический анализ определения понятия: "Значение переменной, при котором уравнение превращается в верное равенство, называется корнем уравнения". 6. А - множество букв в слове "грамматика"; В - множество букв в слове "математика". Найти: АВ, АВ, А\В, АхВ. 7. Правильна ли классификация: Множество многоугольников разбивается на подмножества правильных четырехугольников, шестиугольников и квадратов. 8. Придумайте задание для дошкольников на разбиение множества на классы. 9. Даны множества: А= {2, 4, 6, 8, 10} и В= {1, 3, 5, 7}, элементы которых находятся в соответствии R: «число а меньше числа в», причем аА, вВ. Постройте граф соответствия R, перечислите все пары чисел, находящиеся в соответствии R. 10. Приведите пример задания для дошкольников, выполняя которое они устанавливают соответствие между двумя множествами. 11. На множестве Х={1, 2, 3, 4, 5, 6, 7, 8, 9} задано отношение R: «быть больше на 2». Постройте граф отношения R. Является ли данное отношение отношением порядка? ответ обосновать. 12. Придумайте задание для дошкольников на упорядочение множеств
4,5(2 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ