а) пусть вытаскиваем карточки, из них 2 синих, 4 зеленых, всего достали 6 карт, а доставая еще одну (7-ю) по-любому получим красную, то есть нам требуется достать максимум 7 карточек
по такому же приницпу остальные:
б) 9 (2 син+6 красн+1) карточек
в) 8 (как в "а" только еще одну)
г)4 ( по одной и различных и еще одна - по-любому две одного цвета будут)
д) 7 (достаем 6 красных и еще любую)
е) 7 (достаем по 2 зел, красных и синих, а затем еще одну - будет 3 одного)
ж) 11 (6 красных потом 4 зеленых и еще одну синию - они разные)
Это несложно!
Пусть скорость поезда по расписанию -х,тогда превышающая скорость-х+16, 20мин.=1/3 часа 160/x-160/x+16=1/3 160x+2560-160x/x(x+16)=1/3 7680=x²+16x x²+16x-7680=0 D=16²-4·1·(-7680)=30976 X1,2=-16±176/2 X1=80 X2=-96 (не может быть отриц.),значит х=80 км в час- скорость поезда по расписанию Площадь треугольника равна половине произведения его стороны на высоту,проведенную к этой стороне S=1/2a·h
В кубе ABCDA1B1C1D1 найдите синус угла между прямой AB и плоскостью CB1D1
решение во вкладыше
Так как АВ // D1 C1 , угол между прямой АВ и плоскостью СB1D равен углу между прямой D1C1 и плоскостью СB1D. По теореме о трёх перпендикулярах прямая AC1 перпендикулярна прямой B1D1, ак как ортогональная проекция A1C1 наклонной AC1 на плоскость A1B1C1D1 перпендикулярна прямой B1D1, лежащей в этой плоскости. Аналогично AC1 перпендикулярна CB1. Так как прямая AC1 перпендикулярна двум пересекающимся прямым плоскости СB1D1, эта прямая перпендикулярна плоскости СB1D1.
Пусть O1 центр грани A1B1C1D1. Рассмотрим прямоугольник AA1C1C.
Точка O1 - середина его стороны B1D1, а точка M пересечения AC1 и
CO1 - это точка пересечения диагонали AC1 с плоскостью CB1D1.
Из подобия треугольников C1MO1 и AMC по второму признаку:
< C1MD1 = < AMC как вертикальные и < C1AC = < A1C1B1 как внутренние накрест лежащие при параллельных прямых АС и А1С1) следует, что
C1M / MA= C1O1 / AC = 1 : 2
Таким образом, C1M - перпендикуляр к плоскости CB1D1, причём,
если ребро куба равно a, то C1M = (1/3) AC1 = (1/3)a√3,
а D1M - ортогональная проекция наклонной C1D1 на эту плоскость. Поэтому <C1D1M - искомый угол прямой C1D1 (а значит, и AB) с плоскостью CB1D1.
Из прямоугольного треугольника C1MD1 находим, что
Sin<C1D1M = C1M / C1D1 = [(1/3)a√3] / a = √3 / 3.