а) ответом на этот пример будет отношение коэффициентов при старших степенях переменной числителя и знаменателя, поскольку в числителе и знаменателе - стандартные многочлены 4-й степени и х стремится к ∞; 8/2=4
б)Разложим предварительно многочлены на линейные множители.
3х²+5х-42=0; х₁,₂=(-5±√(25+3*4*42) )/6=(-5±√529)/6=(-5±23)/6; х₁=3; х₂=-14/3; 3х²+5х-42=3*(х-3)(х+14/3)=(х-3)(3х+14); х²-5х+6=0, по теореме, обратной теореме Виета х₁=2; х₂=3; х²-5х+6=(х-2)(х-3). Разделим числитель на знаменатель, с учетом разложений.
(3х²+5х-42)/(х²-5х+6)=(х-3)(3х+14)/(х-2)(х-3)=(3х+14)(х-2). предел от (3х+14)(х-2) при х стремящемся к 3, равен (3*3+14)(3-2)=9+14=23
в) разложение числителя х²-3х+2 , предварительно с подсчитанными по теореме, обратной теореме Виета корнями уравнения х²-3х+2=0, х₁=1; х₂=2, примет вид х²-3х+2=(х-1)*(х-2). Домножим числитель и знаменатель на скобку (√(5-х)+√(х+1)), сопряженную знаменателю. В знаменателе вырисовалась разность квадратов (а-в)*(а+в)=а²-в², т.е. (5-х)-(х+1)=5-х-х-1=4-2х=-2*(х-2), а числитель примет вид
(√(5-х)+√(х+1))*(х-1)(х-2). После деления числителя на знаменатель получим
((√(5-х)+√(х+1))*(х-1)(х-2))/(-2*(х-2))=-((√(5-х)+√(х+1))*(х-1))/(2*(х-1)), подставим вместо х=2, получим -(√3+√3)(2-1)/(2*(2-1))=-2√3/2=-√3
Пошаговое объяснение:
1) (-Б;+Б)
2)y'=-x^3+2x=-x(x^2-2), y'=0, -x(x^2-2)=0, x=0, x^2=2, x=-V2,
x=V2 (V2 - корень из 2), 3) три точки: -V2, 0, V2
4)___+__[-V2]___-___[0]___+___[V2]___-___ y'
возр. max убыв. min возр. max убыв у
5) y(-V2)=- 1/4*(-V2)^4+(-V2)^2=-1+2= 1
y(V2)=1
y(0)=0
6) НА оси ОХ отметить точки -V2=~-1,4, 0 и V2=~1,4 и
отметить значения функции в этих точках, функция четная,
симметрично оси ОУ , можно взять дополнит. точки х=+-2
и найти значения функции в этих точках
3.1t+6.2+4.2t=57.4
7.3t=57.4-6.2=51.2
t=51.2/7.3
t≈7.01