ВАРИАНТ 1. К-7 1) В драматическом кружке занимаются (28:7)*4 = 4*4 = 16 девочек. 2) Возле школы (42:2)*3 = 21*3 = 63 дерева. 3) 5/12< 7/12; 8/9>4/9. 4) а) 7 дм3 = 7/1000 м3: б) 17 мин =17/1140 суток; в) 5 коп= 5/1200 от р. 5) Дробь будет правильной при т = 1 и т = 2.
ВАРИАНТ 2. К-7 1) Ширина прямоугольника (56:8)*7 = 7*7 = 49 см. 2) На олимпиаде было (48:3)*8 = 16*8 = 128 участников. 3) 8/15>4/15; 5/11< 6/11. 4) а) 19 га = 19/100 км2; б) 39ч = 39/168 недели; в) 37г= 37/5000 от 5 кг. 5) Дробь будет правильной при к = 4, к = 3 и к = 2.
Решение Формула для нахождения площади ортогональной проекции фигуры: S(орт)=cosα*S(фигуры), где α - угол между плоскостями,в одной из которых находится сама фигура, а во второй - ее проекция. По формуле Герона найдём сначала площадь самого треугольника: S(тр)=, где р-полупериметр треугольника, a,b,c-его стороны. Отсюда площадь равна: S(тр)=√(9*4*3*2)=6√6 cм² Теперь найдем косинус угла между плоскостями. Как сказано из условия, этот угол равен большему из углов этого треугольника. Известно, что напротив большей стороны лежит больший угол. В нашем случае большая сторона АС=7см, а значит наибольший угол треугольника - ∠В. Из теоремы косинусов найдем косинус этого угла: АС²=АВ²+ВС²-2*АВ*ВС*cos∠B ⇔ cos∠B=(АВ²+ВС²-АС²)/2*АВ*СВ=0.2 Т.к. ∠В=∠α(из условия), то площадь проекции этого треугольника равна: S(орт)=cos∠B*S(тр)=0.2*6√6=(6√6)/5 cм²