Даны координаты вершин треугольника ABC: А(3; 3); В(–3; –3); С(3; 5).
Найти:
1) Периметр треугольника.
Расчет длин сторон
АВ (с) = √((Хв-Ха)²+(Ув-Уа)²) = √72 = 6√2 ≈ 8,48528.
BC (а)= √((Хc-Хв)²+(Ус-Ув)²) = √100 = 10.
AC (в) = √((Хc-Хa)²+(Ус-Уa)²) = √4 = 2.
Периметр равен 12 + 6√2 ≈ 20,48528.
2) Уравнения сторон AB и BC.
АВ : Х-Ха = У-Уа х - 3 = у - 3
Хв-Ха Ув-Уа -6 -6,
х - у = 0 общее уравнение,
у = х уравнение с угловым коэффициентом (к = 1).
ВС : Х-Хв = У-Ув х + 3 = у + 3
Хс-Хв Ус-Ув 6 8, сократить на 2:
4х + 12 = 3у + 9,
4х - 3у + 3 = 0.
у = (4/3)х + 1.
3) Уравнение высоты AD.
к(АД) = -1/к(ВС) = -1/(4/3) = -3/4.
у = (-3/4)х + в. Подставим точку А(3; 3): 3 = (-3/4)*3 + в, в = 3 + (9/4) = 21/4.
Уравнение АД: (-3/4)х + (21/4).
4) Угол ABC.
cos В= АВ²+ВС²-АС² = 0,98995.
2*АВ*ВС
B = 0,141897 радиан,
B = 8,130102 градусов.
5) Площадь S треугольника ABC равна:
S=(1/2)*|(Хв-Ха)*(Ус-Уа)-(Хс-Ха)*(Ув-Уа)| = 6.
Площадь можно найти по формуле Герона: S = √(p(p-a)(p-b)(p-c)).
Полупериметр p = 10,24264. S = 6.
6) Сделать чертеж - построить точки А, В и С по координатам и соединить отрезками.
Сравните числа:
а) –2 < 5;
б) –6 > –7;
д) 36,5 > 0;
е) –8,2 < 0
Выполните сложение:
а) 1,4 + 4,12=5,52;
б) (–7) + 3,6=3,4;
в) –7 + 2=-5;
г) 2,6 + (–1,1)=1,5;
д) (–4,9) + (–1,1)=-6;
Выполните вычитание:
а) 6,37–(–14,1)=20,47;
б) 2,66–1,14=1,52;
в) –7,44–(–43,6)=36,16;
г) –4,09–1,71=-5,8
д) –7– 2=-9
Выполните умножение и деление:
2) -6:1=-6;
3) -0,5∙(-0,9)=0,45;
5) -5∙2∙(-3)=30
6) -0,96:0,016: (-1).=60
Решите уравнение:
1)(0,5+7х):5=8,5
1+14х=85
14х=84
х=6
2) х -5∙(4-х)=11
6х-20=11
6х=31
х=5,16
6. Напишите все целые решения у, если 8< │у│<12
+-11; +-10; +-9