М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
jodydonig
jodydonig
30.11.2020 18:16 •  Математика

1. реши оля купила 25 дм тесьмы, а даша на 50 см меньше. сколько см тесьмы купили девочки вместе? выразил ответ в м и см. 2. длина одного отрезка 440 см, а другого на 40 см меньше. найди длину двух отрезков. вырази ответ в м и см 3. сравни 1сут и 1 нед 3нед и 1 мес 34 сут и 4нед 18ч и 1сут 33 сут и 1 мес 1кг и 965 г 6 дм 4 см и 64 мм 59 см и 6 дм 25 ч и 1 сут 3. вычисли 5 см 4 мм - 2см 7мм 6 дом 7 см + 3дм 8см 2сут -22ч 1ч 20 мин - 40 мин. 56 дм - 3м 7 дм 6 дм 30 см - 6дм 4м 40 см - 5 дм

👇
Ответ:
виолетта430
виолетта430
30.11.2020
1-3 метра
2-840 см
3- 2 см 7 мм
2 дм 9 см
1 сут 2 ч 26 ч
?
30 см
3 м. 5 дм 40 см
4,7(45 оценок)
Открыть все ответы
Ответ:
1dianalady1
1dianalady1
30.11.2020

ответ:

пересечения кривой с осями координат.  

пересечение с осью 0y  

x=0, y=0  

пересечение с осью 0x  

y=0  

-x3+6·x2=0  

x1=0, x2=6  

5) исследование на экстремум.  

y = -x^3+6*x^2  

1. находим интервалы возрастания и убывания. первая производная.  

f'(x) = -3·x2+12·x  

или  

f'(x)=3·x·(-x+4)  

находим нули функции. для этого приравниваем производную к нулю  

x·(-x+4) = 0  

откуда:  

x1 = 0  

x2 = 4  

(-∞ ; 0) (0; 4) (4; +∞)

f'(x) < 0 f'(x) > 0 f'(x) < 0

функция убывает функция возрастает функция убывает

в окрестности точки x = 0 производная функции меняет знак с (-) на (+). следовательно, точка x = 0 - точка минимума. в окрестности точки x = 4 производная функции меняет знак с (+) на (-). следовательно, точка x = 4 - точка максимума.  

2. найдем интервалы выпуклости и вогнутости функции. вторая производная.  

f''(x) = -6·x+12  

находим корни уравнения. для этого полученную функцию приравняем к нулю.  

-6·x+12 = 0  

откуда точки перегиба:  

x1 = 2  

(-∞ ; 2) (2; +∞)

f''(x) > 0 f''(x) < 0

функция вогнута функция выпукла

6) асимптоты кривой.  

y = -x3+6·x2  

уравнения наклонных асимптот обычно ищут в виде y = kx + b. по определению асимптоты:  

находим коэффициент k:  

поскольку коэффициент k равен бесконечности, наклонных асимптот не существует.  

4,4(31 оценок)
Ответ:
valeria02042004
valeria02042004
30.11.2020

ответ:

1) область определения функции. точки разрыва функции.  

2) четность или нечетность функции.  

y(-x)=x3+6·x2  

функция общего вида  

3) периодичность функции.  

4) точки пересечения кривой с осями координат.  

пересечение с осью 0y  

x=0, y=0  

пересечение с осью 0x  

y=0  

-x3+6·x2=0  

x1=0, x2=6  

5) исследование на экстремум.  

y = -x^3+6*x^2  

1. находим интервалы возрастания и убывания. первая производная.  

f'(x) = -3·x2+12·x  

или  

f'(x)=3·x·(-x+4)  

находим нули функции. для этого приравниваем производную к нулю  

x·(-x+4) = 0  

откуда:  

x1 = 0  

x2 = 4  

(-∞ ; 0) (0; 4) (4; +∞)

f'(x) < 0 f'(x) > 0 f'(x) < 0

функция убывает функция возрастает функция убывает

в окрестности точки x = 0 производная функции меняет знак с (-) на (+). следовательно, точка x = 0 - точка минимума. в окрестности точки x = 4 производная функции меняет знак с (+) на (-). следовательно, точка x = 4 - точка максимума.  

2. найдем интервалы выпуклости и вогнутости функции. вторая производная.  

f''(x) = -6·x+12  

находим корни уравнения. для этого полученную функцию приравняем к нулю.  

-6·x+12 = 0  

откуда точки перегиба:  

x1 = 2  

(-∞ ; 2) (2; +∞)

f''(x) > 0 f''(x) < 0

функция вогнута функция выпукла

6) асимптоты кривой.  

y = -x3+6·x2  

уравнения наклонных асимптот обычно ищут в виде y = kx + b. по определению асимптоты:  

находим коэффициент k:  

поскольку коэффициент k равен бесконечности, наклонных асимптот не существует.  

4,8(73 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ