Рассмотрим событие А - из наугад выбранной урны будет извлечён белый шар. Это может произойти в результате следующих предположений: B₁ - будет выбрана 1-я урна В₂ - будет выбрана 2-я урна В₃ - будет выбрана 3-я урна Так как урны выбирают наугад, то выбор любой из них равновозможен, поэтому вероятность выбора шара из этих урн равна P(B₁)=P(B₂)=P(B₃)=1/3 Далее. В первой урне 3 белых шара + 1 чёрный = 4 шара. Вероятность извлечения белого шара, если будет выбрана первая урна P₁=3/4 Во второй урне 6 белых + 4 черных = 10 шаров. Вероятность извлечения белого шара, если будет выбрана вторя урна P₂=6/10=3/5 В третьей урне 9 белых + 1 чёрный = 10 шаров. Вероятность извлечения белого шара, если будет выбрана третья урна Р₃=9/10 По формуле полной вероятности Р(А)=P(B₁)*P₁+P(B₂)*P₂+P(B₃)*P₃=1/3*3/4+1/3*3/5+1/3*9/10= =1/4+1/5+3/10=3/4
Функция f(x)=3x²-x³ 1. Область определения - нет ограничений D(f) = R. 2.Точки пересечения графика с осями координат. При х = 0, у = 0 точка пересечения с осью Оу. При 3x²-x³ = 0, x²(3 - х) = 0 есть 2 точки пересечения с осью Ох: х = 0 и х = 3. 3.Промежутки возрастания и убывания. Находим производную функции и приравниваем её 0: f'(3x²-x³) = 6x - 3x² = 3x(2 - x) = 0. Нашли 2 критические точки: х = 0 и х = 2. Находим знаки производной вблизи критических точек: х = -0.5 0 1.5 2 2.5 у' =6x - 3x² = -3.75 0 2.25 0 -3.75 . Где производная отрицательна - там функция убывает, где производная положительна - функция возрастает. x < 0 и x > 2 функция убывает, 0 < x < 2 функция возрастает.
4.Экстремумы видны по пункту 3. Где производная меняет знак с - на + там минимум, где с + на - там максимум: х = 0 минимум, х = 2 максимум.