М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
clever113
clever113
12.01.2022 20:31 •  Математика

Чему равна сумма наибольшего двузначного и наименьшего чисел которые при делении на 10 в остатке 8?

👇
Открыть все ответы
Ответ:
molchanets98p085or
molchanets98p085or
12.01.2022

9%

Пошаговое объяснение:

Итак, у нас есть 2 станка, отказывающие с вероятностями p1 и p2 соответственно.

Событие X0 = (0 станков отказали) = (Все станки работают). Его можно записать как произведение событий X0=

¯

A1

¯

A2

, поэтому вероятность

P(X0)=P(

¯

A1

¯

A2

)=P(

¯

A1

)⋅P(

¯

A2

)=q1⋅q2.(1)

Событие X1 = (1 станок отказал). Подумаем, когда такое событие произойдет:

1. Когда первый станок откажет (событие A1) и одновременно с этим второй станок работает (событие

¯

A2

), то есть получили произведение событий A1⋅

¯

A2

.

2. Когда второй станок откажет (событие A2) и одновременно с этим первый станок работает (событие

¯

A1

), то есть получили произведение событий

¯

A1

⋅A2.

Так как других вариантов нет, а эти два варианта - несовместные (они не могут произойти одновроменно, или первая ситуация, или вторая), то по теореме сложения вероятностей несовместных событий:

P(X1)=P(A1⋅

¯

A2

+

¯

A1

⋅A2)=P(A1⋅

¯

A2

)+P(

¯

A1

⋅A2)=

дальше уже по известной теореме умножения вероятностей раскрываем скобки:

=P(A1)⋅(

¯

A2

)+P(

¯

A1

)⋅P(A2)=p1⋅q2+q1⋅p2.

Мы получили формулу, позволяющую найти вероятность в точности одного отказавшего станка из двух:

P(X1)=p1⋅q2+q1⋅p2.(2)

Событие X2 = (2 станка отказали). Его можно записать как произведение событий X2=A1⋅A2, поэтому вероятность

P(X2)=P(A1⋅A2)=P(A1)⋅P(A2)=p1⋅p2.(3)

Теория: случай 3 станков

Быстренько обобщим наши формулы для случая 3 станков, отказывающих с вероятностями p1, p2 и p3.

Ни один станок не отказал:

P(X0)=P(

¯

A1

¯

A2

¯

A3

)=P(

¯

A1

)⋅P(

¯

A2

)⋅P(

¯

A3

)=q1⋅q2⋅q3.(4)

В точности один станок отказал, остальные два - нет:

P(X1)==P(A1)⋅P(

¯

A2

)⋅P(

¯

A3

)+P(

¯

A1

)⋅P(A2)⋅P(

¯

A3

)+P(

¯

A1

)⋅P(

¯

A2

)⋅P(A3)==p1⋅q2⋅q3+q1⋅p2⋅q3+q1⋅q2⋅p3.(5)

В точности два станка отказали, а один - работает:

P(X2)==P(A1)⋅P(A2)⋅P(

¯

A3

)+P(A1)⋅P(

¯

A2

)⋅P(A3)+P(

¯

A1

)⋅P(A2)⋅P(A3)==p1⋅p2⋅q3+p1⋅q2⋅p3+q1⋅p2⋅p3.(6)

Все три станка отказали:

P(X3)=P(A1⋅A2⋅A3)=P(A1)⋅P(A2)⋅P(A3)=p1⋅p2⋅p3.(7)

Практика: укрощаем станки

Пример 1. Два станка работают независимо друг от друга. Вероятность того, что первый станок проработает смену без наладки, равна 0,9, а второй – 0,8. Найти вероятность того, что: а) оба станка проработают смену без наладки, б) оба станка за смену потребуют наладки.

Итак, случай с 2 станками, используем формулы (1) и (3), чтобы найти искомые вероятности. Важно, какое событие мы считаем базовым: выше в теории мы использовали "станок откажет", тут же удобнее событие "станок проработает смену" (при этом формулы сохраняют вид, но легко использовать не ту, будьте внимательны).

Итак, пусть pi - вероятность i-му станку проработать смену без наладки. И нужные вероятности:

1) Оба станка проработают смену без наладки:

P(A1⋅A2)=P(A1)⋅P(A2)=p1⋅p2=0,9⋅0,8=

4,6(91 оценок)
Ответ:
rubcovayana
rubcovayana
12.01.2022
График функции y = x² - 2x - 3 это парабола ветвями вверх.

а) значение функции, соответствующее значению аргумента равному -1.5;
Подставим х = -1,5 в уравнение:
y=(-1,5)²-2*(-1,5)-3 = 2,25.
б) значение аргумента, при котором y= -2;
Составляем уравнение: -2 = x² - 2x - 3.
y = x² - 2x - 1 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-2)²-4*1*(-1)=4-4*(-1)=4-(-4)=4+4=8;Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√8-(-2))/(2*1)=(√8+2)/2=√8/2+2/2=√8/2+1 ≈ 2,4142136;
x_2=(-√8-(-2))/(2*1)=(-√8+2)/2=-√8/2+2/2=-√8/2+1 ≈ -0,4142136.
в)нули функции.
Для этого приравниваем функцию нулю:
x² - 2x - 3 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-2)^2-4*1*(-3)=4-4*(-3)=4-(-4*3)=4-(-12)=4+12=16;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√16-(-2))/(2*1)=(4-(-2))/2=(4+2)/2=6/2=3;
x_2=(-√16-(-2))/(2*1)=(-4-(-2))/2=(-4+2)/2=-2/2=-1.
г) промежутки знакопостоянства функции;
y > 0 ⇒ x ∈ (-∞;-1) ∪ (3;+∞),
y< 0 ⇒ x ∈ (-1;3).
д) промежутки возрастания и убывания функции;
Находим вершину параболы: Хо = -в/2а = 2/(2*1) = 1.
Функция убывает при x ∈ (-∞;1) и возрастает при х ∈ (1;+∞). 
е) область значений функции.
Находим минимальное значение функции в её вершине:
Уо = 1² - 2*1 - 3 = 1 - 2 - 3 = -4.
Отсюда ответ: y ∈ R, y ≥ -4.
4,4(92 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ