Разметим весь лист параллельными линиями с шагом 1 см в одном и другом перпендикулярных направлениях, начиная от края, так чтобы образовалось ровно 100 одинаковых квадратиков, каждый площадью в один квадратный сантиметр. Назовём их для удобства дальнейших рассуждений – «ячейками».
Тогда все складки, всех описываемых в условии загибаний, будут совпадать с этими линиями (толщину бумаги мы не учитываем, считая её, как бы, бесконечно тонкой).
Заметим, при этом, что при любом (!) загибании, та ячейка, которая находится в угловом квадратике (верхнем правом) – непременно снова перейдёт в новый угловой многослойный квадратик (верхний правый).
Будем согнутый лист на любой стадии называть «фигурой». Выделим у этой «фигуры» некоторые особые зоны (всего 4 зоны):
1) [один] «угловой квадратик» (о нём мы уже упоминали, верхний правый);
2) [2 штуки] «краевые полосы» – многослойные полосы, шириной в 1 см, образующиеся сверху и справа после нескольких загибании краёв фигуры («угловой квадратик» мы рассматриваем отдельно, а поэтому мы его НЕ включаем в «краевые полосы»)
3) [один] «однослойный остаток».
При каждом загибании фигуры, край, который заворачивают внутрь, прикладывается к листу, и толщина «краевой полосы» увеличивается на один слой листа, а так же заметно увеличивается толщина «угловых квадратиков», примыкающих к данной «краевой полосе». При этом важно понимать, что толщина никакой другой «краевой полосы» не увеличивается.
Когда после всех загибаний получилась «фигура» в виде конечного квадрата 6 на 6 см, часть тонкого однослойного листа, т.е. «однослойный остаток», осталась только в пределах квадрата 5 на 5 см, «огороженного» сверху и справа сантиметровой шириной «краевых полос» и «углового квадратика».
Ширина «краевых полос» всегда равна 1 сантиметру, а их длина в конечном положении будет равна 5 сантиметрам.
Поскольку 10-сантиметровая сторона исходного листа «ужалась» до стороны фигуры, размером в 6 см, то значит, в совокупности, с каждой стороны было загнуто по 4 сантиметра листа. А именно: 4 сантиметра справа и 4 сантиметра сверху. Значит в «краевых полосах» сосредоточено 4 дополнительных (!) слоя листа, а значит, всего в «краевых полосах» сосредоточено 5 слоёв листа.
Площадь «краевой полосы» равна пяти квадратным сантиметрам, и при этом их 2 штуки, и в каждой по 5 слоёв исходного листа, значит всего во всех краевых полосах сосредоточено 5*5*2 = 50 «ячеек».
Площадь «однослойного остатка», размером 5x5 см – равна 25 квадратным сантиметрам и содержит в себе 25 «ячеек».
Всего было 100 «ячеек». Из них 50 + 25 = 75 «ячеек» мы уже нашли. Остальные 25 «ячеек» сосредоточены в «угловом квадратике». А значит в «угловом квадратике» будет сосредоточено 25 слоёв исходного листа.
Если проткнуть шилом такой «угловой квадратик», а потом распаковать «фигуру» обратно в исходное состояние, то мы обнаружим на развёрнутом листе 25 дырок.
Для того чтобы снять все сомнения, просто проведём чистый, "незамутнённый логикой" эксперимент и убедимся в правильности приведённых рассуждений. Результаты эксперимента представлены на фотографиях. Первая – несогнутый квадратный лист 10x10 . Вторая – лист, согнутый до размеров 6x6. Третья – развёрнутый обратно лист с 25-тью дырками.
Добра фея Розабельверде з жалості зачаровує потворного тілом і душею карлика Цахеса, так що більшість людей, переважно філістери, перестають помічати його потворність. Тепер люди тягнуться до нього. Будь-яке гідне похвали справу, вчинене в його присутності, приписується йому, котрий змінив своє колишнє ім'я на нове - Цинобер. І навпаки, варто йому бридко Замяукали або спіткнутися - винен неодмінно виявляється хтось інший. Завдяки дару доброї феї карлик чарує професора Моша Терпіна (одержимого своєрідним баченням «Німецького духу») і його дочка Кандиду. Тільки закоханий в прекрасну дівчину меланхолійний студент Бальтазар і його друг Фабіан зазвичай бачать справжній вигляд лиходія. Щоправда, цієї ж здатністю Гофман наділяє і представників мистецтва (скрипаль Сбьокка, співачка Брагацці), а також чужинців. Цахес-Цинобер не втрачає часу дарма, і, користуючись чужими успіхами, швидко робить кар'єру при дворі місцевого князя Пафнутія і збирається одружитися на Кандиде. Поет-студент Бальтазар, який звернувся за до до магу Просперу Альпануса, дізнається від нього таємницю могутності Циннобера: він вириває з голови карлика трьох вогненних волоска, від яких і йшла вся його магічна сила. Люди бачать, який їхній міністр насправді. Цахесу нічого не залишається, як сховатися в своєму прекрасному палаці, але він тоне там в нічному горщику з нечистотами.
если картофеля в пакете 3 кг:
3 * 2 = 6 кг - масса двух пакетов картофеля
6 - 2 = 4 кг - масса тыквы
ответ: 4 кг
если картофеля в пакете 5 кг:
5 * 2 = 10 кг - масса двух пакетов картофеля
10 - 2 = 8 кг масса тыквы
ответ: 8 кг