решение на фотографиях
Пошаговое объяснение:
1) Линейное ДУ. Используем замену.
2) Однородное ДУ. Используем замену.
3) ДУ 2 порядка, допускающее понижение порядка. Используем замену.
4) Неоднородное линейное ДУ. Решено с метода неопределенных коэффициентов. Первым действием решаем ОЛДУ (однородное линейное ДУ). Вторым подбираем y~, дифференцируем, подставляем все это в НЛДУ, находим. В ответе к у из 1) прибавляем у~ из 2).
5) Все то же НЛДУ, но уже решаем методом вариации произвольных постоянных. Постаралась вкратце формулами расписать, надеюсь, понятно. Находим главный определитель (W), а в W1 и W2 на месте 1 и 2 столбцов подставляем значения независимых членов, без переменных (Z'1(x) и Z'2(x)), я их выделила черным цветом. И еще сначала искала Z2(x), так как ошиблась со столбцом. Нашли определитель - его значение и будет являться Z'(1 или 2)(х). Осталась интегрировать, чтобы найти функцию без '. Готово. Не забываем прибавить ту часть функции, которую нашли в 1), и записываем ответ.




Сначала находим долю билетов у девочек (60% * 80%)
1) 0,6 * 0,8 = 0,48
Затем находим долю билетов у мальчиков (40% * 75%)
2) 0,4 * 0,75 = 0,3
Теперь найдем сколько всего в школе детей имеют билеты (48 + 30)
3) 0,48 + 0,3 = 0,78
Сейчас мы можем найти вероятность того, что потерянный билет принадлежал девочке
4) Р (дев.) = 48 / 78 = 8 / 13
И находим вероятность того, что потерянный билет принадлежал мальчику
5) Р (мал.) = 30 / 78 = 5 / 13
вероятность того, что потерянный билет принадлежал девочке равна 8 / 13, а вероятность того, что потерянный билет принадлежал мальчику равна 5 / 13.
Пошаговое объяснение:
значит (0;0) означает, что х=0 и у=0, подставим эти значения в уравнение у=6х+2
0 = 6*0+2
0 = 2 - неверно, значит (0;0) не принадлежит графику
(0;2) х=0, у=2
2 = 6*0 +2
2=2 - верно, значит (0;2) - лежит на графике данного уравнения
(1;1) х=1, у=1
1= 6*1 +2
1=8 - неверно, значит не принадлежит
(-1;4) х=-1, у=4
4 =6*(-1) +2
4= -4 - неверно, значит (-1;4) не принадлежит