53 + 18 = ( 50 + 3) + ( 10 + 8) = ( 50 + 10) + ( 3 + 8) = 60 + 11 = 71
53 + 28 = ( 50 + 3) + ( 20 + 8) = ( 50 + 20) + ( 3 + 8) = 70 + 11 = 81
53 + 38 = ( 50 + 3) + ( 30 + 8) = ( 50 + 30) + ( 3 + 8) = 80 + 11 = 91
вычислив первый пример, можем заметить, что в каждом следующем, второе слагаемое на десяток больше, не вычисляя можно написать ответы))
73 + 17 = ( 70 + 3) + ( 10 + 7) = (70 + 10) + ( 3 + 7) = 80 + 10 = 90
73 + 19 = ( 70 + 3) + ( 10 + 9) = ( 70 + 10) + ( 3 + 9) = 80 + 12 = 92
73 + 18 = ( 70 + 3) + ( 10 + 8) = ( 70 + 10) + ( 3 + 8) = 80 + 11 = 91
55 + 29 = ( 50 + 5) + ( 20 + 9) = ( 50 + 20) + ( 5 + 9) = 70 + 14 = 84
46 + 38 = ( 40 + 6) + ( 30 + 8) = ( 40 + 30) + (6 + 8) = 70 + 14 = 84
37 + 47 = ( 30 + 7) + ( 40 + 7) = ( 30 + 40) + ( 7 + 7) = 70 + 14 = 84
Положим так. Если А1 танцевал с Б1, а А2 танцевал с Б2, то А1 танцевал с Б2, а А2 танцевал с Б1. Есть какое-то множество девочек М1, с которыми танцевал мальчик А1; и множество девочек М2, с которыми танцевал мальчик Б2. Оба множества непусты ввиду первых двух предложений.
Гипотеза указывает, что мальчик А1 танцевал с любой девочкой из М2. Множество М1 можно пополнять до тех пор, пока остаются другие нерассмотренные мальчики помимо А1; и если множество М1 ещё не включает всех девочек, то, ввиду предложения о наличии затанцованного мальчика для каждой девочки, такие мальчики остаются. Значит, А1 танцевал со всеми девочками, противоречие.