ответ: функция имеет минимум, равный -3/8, в точке M(1/8; 3/8; -3/8). Максимума функция не имеет.
Пошаговое объяснение:
1. Находим первые и вторые частные производные и после приведения подобных членов получаем:
du/dx=6*x-4*y-2*z, du/dy=-4*x+10*y+6*z-1, du/dz=-2*x+6*y+8*z+1, d²u/dx²=2, d²u/dy²=10, d²u/dz²=8, d²u/dxdy=-4, d²u/dydx=-4, d²u/dxdz=-2, d²u/dzdx=-2, d²u/dydz=6, d²u/dzdy=6.
2. Приравнивая нулю первые частные производные, получаем систему уравнений:
6*x-4*y-2*z=0
-4*x+10*y+6*z=1
-2*x+6*y+8*z=-1
Решая её, находим x=1/8, y=3/8, z=-3/8. Таким образом, найдены координаты единственной стационарной точки M (1/8; 3/8; -3/8).
3. Вычисляем значения вторых частных производных в стационарной точке:
d²u/dx²(M)=a11=6, d²u/dxdy(M)=a12=-4, d²u/dxdz(M)=a13=-2, d²u/dydx(M)=a21=-4, d²u/dy²(M)=a22=10, d²u/dydz(M)=a23=6, d²u/dzdx(M)=a31=-2, d²u/dzdy(M)=a32=6, d²u/dz²(M)=a33=8
4. Составляем матрицу Гессе:
H = a11 a12 a13 = 6 -4 -2
a21 a22 a23 -4 10 6
a31 a32 a33 -2 6 8
5. Составляем и вычисляем угловые миноры матрицы Гессе:
δ1 = a11 = 6, δ2 = a11 a12 = 44, δ3 = a11 a12 a13 = 192
a21 a22 a21 a22 a23
a31 a32 a33
6. Так как δ1>0, δ2>0 и δ3>0, то точка М является точкой минимума, равного u0=u(1/8; 3/8; -3/8)=-3/8.
Пошаговое объяснение:
Обозначим первую цифру четырехзначного числа - а, вторую - b, третью - c, четвертую - d.
Записываем наше число в десятичной системе счисления:
1000a+100b+10c+d.
А теперь отнимем из этого числа сумму его цифр:
1000a+100b+10c+d-a-b-c-d.
Упрощаем выражение и считаем;
1000a+100b+10c+d-a-b-c-d=1000a+100b+10c-a-b-c=999a+99b+9c=9(111a+11b+c)
Наше число после вычитания суммы цифр имеет множитель 9. Таким образом, число до вычеркивания цифры должно делиться на 9.
Учитывая, что число делится на 9, если сумма его цифр делится на 9.
Полученное число 446 на 9 не делится (4+4+6=14). А ближайшее число, кратное 9 - это 18 (следующее будет 27, но это две цифры будет и нам не подходит). Значит зачеркнутая цифра 18-14=4
Зачеркнутая цифра была 4
1)7-2=5(дней)
ответ 5 дней сидит дома