2x+2y=8 (делим всё уравнение на 2) x+y=4 X и Y могут быть как числами 2 и 2, так и 3 и 1 или 1 и 3. Но так же могут быть отрицательные числа, например -5 и 1, -6 и 2 и т.д. (Не помню, как в 5 классе решали) 3х5y+4y3x=15xy+12xy=17xy
Пусть наибольшее возможное значение наибольшего общего делителя равно d. Тогда каждое из 13 чисел делится на d, значит, и их сумма, 1988, делится на d. Кроме того, должно выполняться неравенство 1988/d≥13 (каждое из 13 чисел не меньше d).
Разложим на множители число 1988: 1988=2²*7*71. Для того, чтобы число d было наибольшим, число 1988/d должно быть наименьшим возможным, но не меньше 13. Поскольку 1988 не делится на 13, наимеьшим возможным значением дроби является число 2*7=14. А значит, наибольшим возможным значением делителя d является число 1988/14=142. Оно достигается, если одно из чисел равно 2*142=284, а 12 других равны 142.
x+y=4
X и Y могут быть как числами 2 и 2, так и 3 и 1 или 1 и 3. Но так же могут быть отрицательные числа, например -5 и 1, -6 и 2 и т.д. (Не помню, как в 5 классе решали)
3х5y+4y3x=15xy+12xy=17xy