1) номера на карточках Алисы не должны быть кратными трем это номера: 61,62,64,65,67 61:3=20(ост1) 62:3=20(ост2) 64:3=21(ост1) 65:3=21(ост2) 67:3=22(ост1). Варианты пар: 61,64,67 и 62и 65 2) У Билла не кратны четырем: 61:4=15(ост1.) 62:4=15(ост2) 63:4=15(ост3) 65:4=16(ост1) 66:4=16(ост2) 67:4=16(ост.3) варианты пар: 61,65 и 62,66, и 63,67 3) у Карла не кратны пяти 61:5=12(ост1) 62:5=12(ост2) 63:5=12(ост3) 64:5=12(ост4) 66:5=13(ост1) 67:5=13(ост2) варианты пар: 61,66 и 62,67 4) подходит вариант, что у Карла 61,66; у Билла 63,67; у Алисы 62,65 осталась карточка-64 ответ:64
Посчитаем количество квадратов по горизонтальной стороне стороне
an = 120/120 = 1 - последний (n-й) член ариф. прогрессии
a₁= 12/120 -первый член ариф. прогрессии (для горизонтальной стороны)
d = 12/120 - разность ариф. прогрессии (для горизонтальной стороны)
n - количество членов ариф. прогрессии (количество квадратов)
аn = a₁ + (n-1)*d
1 = 12/120 + (n-1)*12/120
1= 12/120 + (12/120)*n - 12/120
1 = 12/120*n
n = 1 : (12/120) = 1*120/12 = 10 - количество членов ариф. прогрессии (количество квадратов) - ВЕРНО
ответ: 10 квадратов