180целых 10/19 : 162 целых 9/19
Пошаговое объяснение:
Чтобы разделить некоторое число пропорционально данным числам (разделить в данном отношении), надо разделить это число на сумму этих чисел и результат умножить на каждое из них.
Обратные числа: 4/3, 6/5
Приведём их к общему знаменателю 20/15 : 18/15
Затем уберем знаменатель и сложим числители 20+18=38
Теперь 343 разделим на 38 и умножим по очереди на числители 20, 18
343:38*20=180целых 10/19
343:38*18=162 целых 9/19
Проверка: 180 целых 10/19+ 162 целых 9/19= 343 верно
ответ: 180 целых 10/19 : 162 целых 9/19 получится если 343 разделить на части пропорционально числам 3/4, 5/6
находим 2-ю производную функции, приравниваем ее к нулю, и находим точку, которая возможно является точкой перегиба
далее проверяем следующее - если при переходе через эту точку 2-я производная меняет знак, то это точно точка перегиба. Соответственно, если 2-я производная меньше 0 на интервале, то график функции на данном интервале выпуклый, если больше 0, то вогнутый
перед х первой степени не стоит знак, поэтому предположу, что там +х, хотя особой роли он не играет
Проверим значения 2-й производной в точках до и после х=2
Как видно, при переходе через х=2 производная поменяла знак, поэтому х=2 - точка перегиба, а так как y''(0)<0, то график функции выпуклый на интервале (-∞;2) и вогнутый на интервале (2;+∞)