![1a)\; \sqrt[5]{8}\cdot \sqrt[5]{-4}+\sqrt[6]{(-3)^6}=\sqrt[5]{-32}+|-3|=-2+3=1\\\\1b)\; \sqrt[9]{6+\sqrt{35}}\cdot \sqrt[9]{6-\sqrt{35}}=\sqrt[9]{6^2-35}=\sqrt[9]1=1\\\\2a)\; \frac{\sqrt2-b}{\sqrt2+b}=\frac{(\sqrt2-b)^2}{2-b^2}\\\\2b)\; \frac{a+1}{\sqrt[3]{a^2}-\sqrt[3]{a}+1}=\frac{(a+1)\cdot (\sqrt[3]{a}+1)}{(\sqrt[3]{a}+1)(\sqrt[3]{a^2}-\sqrt[3]{a}+1)}=\frac{(a+1)(\sqrt[3]{a}+1)}{a+1}=\sqrt[3]{a}+1\\\\3a)\; \sqrt{\sqrt[10]{a^4}}-\frac{3a}{\sqrt[5]{a^4}}=\sqrt[20]{a^4}-\frac{3a}{\sqrt[5]{a^4}}=](/tpl/images/0599/6250/6a51d.png)
1) у = 3х + 1.
1. D(y) = R - симметрична относительно 0.
2. у (-х) = 3•(-х) + 1 = -3х + 1.
у (-х) ≠ у(х),
у (-х) ≠ - у(х),
у = 3х + 1 не является ни чётной, ни нечётной. у = 3х + 1 - функция общего вида.
2) у = -2х + 3.
1. D(y) = R - симметрична относительно 0.
2. у (-х) = -2•(-х) + 3 = 2х + 3.
у (-х) ≠ у(х),
у (-х) ≠ - у(х),
у = -2х + 3 не является ни чётной, ни нечётной. у = -2х + 3 - функция общего вида.
3) у = х^2 - 2.
1. D(y) = R - симметрична относительно 0.
2. у (-х) = (-х)^2 - 2 = х^2 - 2 = у(х),
по определению функция является чётной.
4) у = -2х^2 - 1.
1. D(y) = R - симметрична относительно 0.
2. у (-х) = -2•(-х)^2 - 1 = -2х^2 - 1 = у(х),
по определению функция является чётной.
5) у = 1/х.
D: x ≠ 0,
D = (- ∞; 0)∪(0; +∞ ) - симметрична относительно 0.
у(-х) = 1/(-х) = - 1/х = - у(х),
по определению функция является нечётной.
1) у = 3х + 1.
1. D(y) = R - симметрична относительно 0.
2. у (-х) = 3•(-х) + 1 = -3х + 1.
у (-х) ≠ у(х),
у (-х) ≠ - у(х),
у = 3х + 1 не является ни чётной, ни нечётной. у = 3х + 1 - функция общего вида.
2) у = -2х + 3.
1. D(y) = R - симметрична относительно 0.
2. у (-х) = -2•(-х) + 3 = 2х + 3.
у (-х) ≠ у(х),
у (-х) ≠ - у(х),
у = -2х + 3 не является ни чётной, ни нечётной. у = -2х + 3 - функция общего вида.
3) у = х^2 - 2.
1. D(y) = R - симметрична относительно 0.
2. у (-х) = (-х)^2 - 2 = х^2 - 2 = у(х),
по определению функция является чётной.
4) у = -2х^2 - 1.
1. D(y) = R - симметрична относительно 0.
2. у (-х) = -2•(-х)^2 - 1 = -2х^2 - 1 = у(х),
по определению функция является чётной.
5) у = 1/х.
D: x ≠ 0,
D = (- ∞; 0)∪(0; +∞ ) - симметрична относительно 0.
у(-х) = 1/(-х) = - 1/х = - у(х),
по определению функция является нечётной.