М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ws4ewdrygfj
ws4ewdrygfj
19.05.2023 16:10 •  Математика

Решить уравнения 3 x - 5 x- 16 = 80

👇
Ответ:
aarmen
aarmen
19.05.2023
39+57-16=80
37+59-16=80
4,5(4 оценок)
Открыть все ответы
Ответ:
carn1889
carn1889
19.05.2023

так так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так так

Пошаговое объяснение:

ак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так такак так так так так так так так

4,5(33 оценок)
Ответ:
sonyasm2006
sonyasm2006
19.05.2023

\begin{gathered}a) \int{(x^4-8x^3+4x)}dx=\\ | \int{x^{\alpha}dx}= \frac{x^{\alpha+1}}{\alpha+1}+C|\\ = \int{x^4}dx-8\int{x^3}dx+4\int{x^1}dx=\\ = \frac{x^{4+1}}{4+1}-8 \frac{x^{3+1}}{3+1}+4 \frac{x^{1+1}}{1+1}+C=\\ = \frac{x^5}{5}- \frac{8x^4}{4}+ \frac{4x^2}{2}+C=\\ = \frac{x^5}{5}-2x^4+2x^2+c;\\ \end{gathered}a)∫(x4−8x3+4x)dx=∣∫xαdx=α+1xα+1+C∣=∫x4dx−8∫x3dx+4∫x1dx==4+1x4+1−83+1x3+1+41+1x1+1+C==5x5−48x4+24x2+C==5x5−2x4+2x2+c;

\begin{gathered}b) \int{\cos(2x)sin(x)}dx=|d(\cos(x))=-\sin(x)dx|=\\ =-\int{\cos(2x)d(\cos(x))}=\\ |\cos(2\alpha)=\cos^2\alpha-\sin^2\alpha=2\cos^2\alpha-1=1-2\sin^2\alpha|\\ =-\int{(2\cos^2(x)-1)}d(\cos(x))=| t=\cos(x)|=\\ =-\int{(2t^2-1)}dt=|\int{x^{alpha}}dx= \frac{x^{\alpha+1}}{\alpha+1}+C|\\ =-2\int{t^2}dt+\int{t^0}dt=-2 \frac{t^{2+1}}{2+1}+ \frac{t^{0+1}}{0+1}=\\ =- \frac{2}{3}t^3+t+C=|t=\cos(x)|=\cos(x)- \frac{2}{3}\cos^3(x)+C=\\ \cos(x)(1- \frac{2}{3}\cos^2(x))+C=\\ =\cos(x)(1- \frac{2}{3}(1-\sin^2(x))+C= \end{gathered}b)∫cos(2x)sin(x)dx=∣d(cos(x))=−sin(x)dx∣==−∫cos(2x)d(cos(x))=∣cos(2α)=cos2α−sin2α=2cos2α−1=1−2sin2α∣=−∫(2cos2(x)−1)d(cos(x))=∣t=cos(x)∣==−∫(2t2−1)dt=∣∫xalphadx=α+1xα+1+C∣=−2∫t2dt+∫t0dt=−22+1t2+1+0+1t0+1==−32t3+t+C=∣t=cos(x)∣=cos(x)−32cos3(x)+C=cos(x)(1−32cos2(x))+C==cos(x)(1−32(1−sin2(x))+C=

\begin{gathered}=\cos(x)(1- \frac{2}{3}+ \frac{2}{3}\sin^2(x))+C=\\ =\cos(x)( \frac{1}{3}+ \frac{2}{3}\sin^2(x))+C=\\ = \frac{1}{3}\cos(x)(1+2\sin^2(x))+C; \end{gathered}=cos(x)(1−32+32sin2(x))+C==cos(x)(31+32sin2(x))+C==31cos(x)(1+2sin2(x))+C;

\begin{gathered}c)\int(e^{3x}+1)dx=\int{e^{3x}}dx+\int{}dx=\\ |\int{e^x}dx=e^x+C; \int{x^\alpha}dx= \frac{x^{\alpha+1}}{\alpha+1}+C;d(x)= \frac{1}{3}dx|}\\ = \frac{1}{3}\int{e^{3x}}d(3x)+\int{x^0}dx=\\ = \frac{1}{3}e^{3x}+ \frac{x^{0+1}}{0+1}+C=\\ = \frac{1}{3}e^{3x}+x+C \end{gathered}


Высшая математика Вычислить Интегралы 1) S(x4-8x^3+4x+1/x^2)dx 2) S(1/sin^2x-2cosx)dx
4,4(20 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ