Без потери общности, пусть P лежит между M и N, если углы>45, тогда углы CMB и CNA так же >45 (по свойству внешнего угла в треугольнике). Проведем высоту CP' и пусть CN>CM, возьмем точку N' симметричную относительно высоты CP' точке N, тогда CN=CN' из условия следует что требуется доказать то что
CN+CM>CP
CP+CN>CM
CP+CM>CN
Так как угол CN'B>45 (по тому же принципу), и CP' высота (минимальный CP среди всех) то угол P'CN' <45 , значит CP'>P'N' , пусть так же E (образ точки P) - такая точка что лежит между P' и M , пусть образ E это C(P) , получаем из того что C(P)=CE<CM<CN' очевидно получаем
CE<CM+CN'=CM+CN
CM<CE+CN'=CE+CN
То есть первые два неравенства выше.
Докажем что
CE+CM>CN
так как CE>EN' (следствие того что угол P'CN'<45)
CE+CM>EN'+CM>MN'+CM>CN'=CN
то есть MN+CM>CN
аналогично если E лежит на между N и P'.
б) 1/5-1/6 < 1/6-1/5
в) 3,7*1/3 < 3/7:1/3
г) 5,6:2,5 < 5,6*2,5