<BMA=<DAM как накрест лежащие углы при пересечении двух параллельных прямых AD и ВС секущей АМ. Но
< DAM=<BAM, т.к. АМ - биссектриса, значит
<BMA=<BAM, и треуг-ик АВМ равнобедренный (т.к. углы при его основании АМ равны). Значит АВ=ВМ.
<CMD=<ADM как накрест лежащие углы при пересечении двух параллельных прямых AD и ВС секущей DM. Но
<ADM=CDM, т.к. DM - биссектриса, значит
<CMD=<CDM, и треуг-ик DCM также равнобедренный (углы при его основании DM равны). Т.е.
АВ=CD=BM=CM
Пусть АВ будет х (соответственно, CD, BM и СМ также будут х). Зная, что AN=10, запишем:
АВ=AN-BN, BN=AN-AB=10-x
Рассмотрим треуг-ки BNM и CDM. Они равны по второму признаку равенства: сторона и два прилежащих к ней угла одного треуг-ка соответственно равны стороне и двум прилежащим к ней углам другого треуг-ка. В нашем случае:
- ВМ=СМ;
- <BMN=<CMD как вертикальные углы;
- <MBN=<MCD как накрест лежащие углы при пересечении двух параллельных прямых AN и CD секущей ВС. Значит
BN=CD=x
Выше выведено, что BN=10-x. Приравняем 10-х и х, раз речь идет об одном и том же:
10-х=х
2х=10
х=5
АВ=CD=5 см, AD=BC=5+5=10 см
Р ABCD = 2AB+2BC=2*5+2*10=30 см
<BMA=<DAM как накрест лежащие углы при пересечении двух параллельных прямых AD и ВС секущей АМ. Но
< DAM=<BAM, т.к. АМ - биссектриса, значит
<BMA=<BAM, и треуг-ик АВМ равнобедренный (т.к. углы при его основании АМ равны). Значит АВ=ВМ.
<CMD=<ADM как накрест лежащие углы при пересечении двух параллельных прямых AD и ВС секущей DM. Но
<ADM=CDM, т.к. DM - биссектриса, значит
<CMD=<CDM, и треуг-ик DCM также равнобедренный (углы при его основании DM равны). Т.е.
АВ=CD=BM=CM
Пусть АВ будет х (соответственно, CD, BM и СМ также будут х). Зная, что AN=10, запишем:
АВ=AN-BN, BN=AN-AB=10-x
Рассмотрим треуг-ки BNM и CDM. Они равны по второму признаку равенства: сторона и два прилежащих к ней угла одного треуг-ка соответственно равны стороне и двум прилежащим к ней углам другого треуг-ка. В нашем случае:
- ВМ=СМ;
- <BMN=<CMD как вертикальные углы;
- <MBN=<MCD как накрест лежащие углы при пересечении двух параллельных прямых AN и CD секущей ВС. Значит
BN=CD=x
Выше выведено, что BN=10-x. Приравняем 10-х и х, раз речь идет об одном и том же:
10-х=х
2х=10
х=5
АВ=CD=5 см, AD=BC=5+5=10 см
Р ABCD = 2AB+2BC=2*5+2*10=30 см
б)на 9620
627-39=588-2число
588+627=1215-3число
1215+588+627=2430-сумма
а)2458+542=3000+367=3367
б)849-249=600-135=465
149+35=184мм-CD
184+149+149=479-периметр BCD