Х км/ч- скорость 1 автобуса(х+4) км/ч- скорость 2 автобусаS=72 км72/х час-время 1 автобуса72/(х+4) час- время 2 автобусаОдин автобус прибыл на 15 минут раньше, т.е на 1/4ч или 0.25часа72/х-72/(х+4)=0,25- умножим обе части уравнения на х(х+4), при условии,что х(х+4) не равно нулю.72х+288-72х=0,25х^2+x0.25x^2+x-288=0-умножим обе части уравнения 4x^2+4x-1152=0D=4^2-4*(-1152)=16+4608=4624x1=-4+68/2=64/2x1=32x2=-4-68/2=-72/2x2=-36-корень не является нашим решением уравнения х км/ч- скорость 1 автобуса=32км/ч(х+4) км/ч- скорость 2 автобуса=32+4=36км/ч 72/32-72/36=0,252,25-2=0,250,25=0,25-Один автобус прибыл на 15 минут раньше(0.25часа или 1/4часа)
1. Интервал знака постоянства. Производная равна: Приравняем её нулю: 1 = 4√х. 1 = 16х, х = 1/16. Критическая точка одна. х = 0.05 0.0625 0.1 y'=(1/(2x^(1/2))-2 0.23607 0 -0.41886. Где производная положительна - там функция возрастает, где производная отрицательна - там функция убывает. Убывает на промежутке (-oo, 1/16], возрастает на промежутке [1/16, oo) 2. Точка максимума. По пункту 1: где производная меняет знак с + на - , там максимум функции - это точка х = 1/16, у = 1/8. 3. Интервал выпуклости. Находим вторую производную: Переменная в знаменателе не может быть равна нулю - перегиба у функции нет. Вторая производная только отрицательна (корень из квадрата) - график функции только выпуклый вверх. 4. Какие Асимптоты имеет график. Горизонтальные асимптоты найдём с пределов данной функции при x->+oo и x->-oo limx→−∞(x√−2x)=∞limx→−∞(x−2x)=∞значит, горизонтальной асимптоты слева не существует. limx→∞(x√−2x)=−∞limx→∞(x−2x)=−∞значит, горизонтальной асимптоты справа не существует.
Наклонную асимптоту можно найти, подсчитав предел функции sqrt(x) - 2*x, делённой на x при x->+oo и x ->-oo limx→−∞(1x(x√−2x))=−2limx→−∞(1x(x−2x))=−2значит, уравнение наклонной асимптоты слева: y=−2xy=−2x,
9y - 9x = 45
y - x = 5
Вот все
16 + 45 = 61
27 + 45 = 72
38 + 45 = 83
49 + 45 = 94