Если х+у = 1, то у = 1-х. Подставим эту зависимость в заданное выражение и получаем функцию f(x) = х⁴+(1-х)⁴. Производная этой функции равна: f"(x) = 4x³-4(1-x)³. Приравняв производную нулю, найдём критические точки. 4x³-4(1-x)³ = 0 или, сократив на 4, x³-(1-x)³ = 0. Раскроем скобки и приведём подобные: 2х³-3х²+3х-1 = 0. Разложим на множители: (2х-1)(х²-х+1) = 0. Первый корень: 2х-1 = 0, х = 1/2. х²-х+1 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=(-1)^2-4*1*1=1-4=-3; Дискриминант меньше 0, уравнение не имеет корней.
Число делится на 8, если три последние цифры его нули или образуют число, делящееся на 8. В остальных случаях - не делится. Значит нам не интересны первые 4 цифры номера Маши и Сережи, а именно там различия. Поскольку 3 последние цифры будут совпадать, то остаток от деления на 8 будет одинаковым, а именно 3.
ответ 3
Если номер Маши представить в виде х - где х семизначное число, то поскольку номер Сережи отличается первой цифрой и она больше на 2, то номер Сережи можно представить как х+2*10⁶=х+2000000 2 000 000:8= 250 000 т.е. делится на 8, а значит остаток от деления будет зависеть только от х, а он равен 3.