Раз спрашивается путь, примем его за Х, тогда в первый день пройдено: (2/7)·Х. А осталось: Х-2Х/7=(7Х-2х)/7=5Х/7; Во второй день пройдено: (5Х/7)·3/5= 3Х/7; Значит, на третий день осталось: 5Х/7 -3Х/7=2х/7.И это по условию 22 версты! Т.е.: 2Х/7 = 22, Х=(22·7):2= 77(верст). ответ: 77 верст составляет путь от царского двора до топкого болота! По профилю не понять возраст. Если нужно решить без Х, его можно убрать, приняв весь путь за 1, тогда в первый день пройдено 2/7 пути, осталось: 1-2/7= 5/7, во второй (5/7)·3/5=3/7; осталось 5/7-3/7=2/7.Если 2/7 пути это 22 версты, то весь путь: 22:2·7=77(верст)
1. из двух дробей с одинаковым знаменателем меньше та, у которой числитель меньше. 4 меньше, чем 5; 6 и 7, т.е 4/12 меньше. 4/12 < 5/12 < 6/12 < 7/12
2. 3/5. здесь числитель больше половины знаменателя. ( Половина целого - это 1/2, и любая дробь, знаменатель которой в два раза больше числителя, даст при сокращении 1/2) 3 > 5/2 ( 3 = 6/2: 6/2>5/2, так как 6>5)
3. половина целого у той дроби, где числитель равен половине знаменателя, т.е. это 3/6, если ее сократить на 3, то получим 1/2
4. на координатной оси левее будет точка с наименьшим значением, т.е (.)А(1/7) ( Если сравним с 1/2, получим:1/7<1/2; 3/6=1/2; 6/11>1/2, или приведем дроби к общему знаменателю (6*7*11=462); 1/7 = 66/462; 3/6 = 231/462; 6/11= 252/462; 66<231<252)
5. 5/6; 5/7; 6/7 - 3 правильных дроби и 3: 6/5; 7/5; 7/6 - неправильные (т.е. числитель у них больше знаменателя) дроби.