Один угол треугольника (a), другой угол треугольника (b), третий угол по условию = (a+b)/2 (a+b) + (a+b)/2 = 180° (a+b) * (3/2) = 180° (a+b) = 180° *2 / 3 = 120° третий угол = (a+b)/2 = 60° стороны, образующие этот угол, по условию (х) и (2х) по т.синусов: х / sin(a) = 2x / sin(b) 2*sin(a) = sin(b) и a+b = 120° 2*sin(a) = sin(120°-a) 2*sin(a) = sin(180°-(a+60°)) sin(180°-x) = sin(x) 2*sin(a) = sin(a+60°) sin(30°) = 1/2 2*sin(30°) = sin(30°+60°) sin(90°) = 1 a = 30°; b = 120° - 30° = 90° другими словами: катет против угла в 30° = половине гипотенузы можно еще т.косинусов применить (т.к. в 9 кассе тригонометрические преобразования еще не проходят) для третьей стороны: с² = х² + (2х)² - 2*х*2х*cos(60°) c² = x² + 4x² - 2x² = 3x² проверим обратную т.Пифагора: х² + 3х² = (2х)², т.е. это прямоугольный треугольник)) решение для 7 класса: на стороне (2х) отложить длину (х), получим равнобедренный треугольник с углом при вершине 60°, он же будет равносторонним, т.к. оставшиеся два угла равны: (180°-60°)/2 = 60° внешний угол для этого равностороннего треугольника будет =120° и вторая часть данного треугольника -это равнобедренный тупоугольный треугольник с углами при основании (180°-120°)/2 = 30° т.е. мы нашли второй угол данного треугольника = 30° на третий угол осталось 180°-60°-30° = 90° это прямоугольный треугольник.
Приветик, снизу прикрепил)