Обозначим центр сферы O, радиус сферы R, а плоскость сечения α. Обозначим центр окружности сечения O' и ее радиус r. Расстояние от O до O' равно ρ. Длина окружности сечения L равна 2πr.
Возьмем плоскость β так, чтобы она была перпендикулярна α и содержала центр сферы. Плоскости α и β пересекаются по прямой a, которая пересекает сферу в точках A и B. OA = OB = R. При этом, точки A и B являются диаметрально-противоположными точками окружности сечения O'. Значит, O'A = O'B = r. При этом точка O' лежит в плоскости β.
1.угол ОМК=ОКМ, т.к треугольник ОМК-равнобедренный(ОК=ОМ=радиус) ОК перпендикулярен касательной по определению, значит угол между ними 90 град. тогда угол ОКМ=90-84=6град следовательно, угол ОМК=ОКМ=6град.
2.рассмотрим дополнительный треугольник ОАВ, где О-центр окр. Треугольник ОАВравностороннийи тогда угол ОВА=САВ=75 град по условию Сумма углов треугольника должна быть равна 180 град, следовательно, угол АОВ=180-75-75=30град. АОВ+ВОС=180град, из них АОВ=30, следовательно, ВОС=180-30=150град. Треугольник СОВ тоже равнобедренный и его углы ОСВ=ОВС отсюда каждый из них=(180-150)/2=15град т.е угол С=15град
4.уголОАВ=15, но ОВА=ОАВ(треугольник равнобедренный, значит, углы равны) ОВА=15град. СВО=56-15=41град ВСО=СВО=41град
8.равнобедренные треугольники СОД и АОД центрально симметричны поэтому ОСД=ОДС=ОАВ=ОВА=25 град
.Пусть угол KOC — данный, ОВ — его биссектриса.
∠AOK + ∠KOC = 180° (т.к. они смежные).
Т.к. биссектриса по определению делит данный угол пополам, то ∠AOB = 180° — ∠KOC : 2.
1) 180° - 50° : 2 = 155°;
2) 180° - 90° : 2 = 135°;
3) 180° - 150° : 2 = 105°.