1)CB - ребро двугранного угла. Чтобы найти линейный угол двугранного угла, необходимо построить плоскость ⊥ ребру BC. Опустим AE ⊥ BC, DE ⊥ BC по теореме о трех перпендикулярах, где AE - проекция, DE - наклонная. BC - прямая проведенная через основание наклонной и перпендикулярная проекции. AE и DE - находятся в одной плоскости и пересекаются, ВС - перпендикулярна AE и DE ⇒ перпендикулярна плоскости AED ⇒∠AED - линейный угол двугранного угла ∠ABCD. 2) ΔABC - равнобедренный, т.к. AB = AC = 10 см ⇒ опущенный перпендикуляр AE есть медиана ⇒ EC = DC/2 = 6 см. 3) ΔAEC - прямоугольный По т. Пифагора (см) 4) т.к. AD = AE = 8(см) ⇒ ΔADE равнобедренный. ΔADE - прямоугольный и равнобедренный ⇒ ∠AED = 45° ответ: ∠AED = 45°
y(1)=4×1^2 - 4×1+1=4-4=0
y(-1)=4×(-1)^2 - 4×(-1)+1=4+4+1=9
y(4)=4×4^2 - 4×4+1=4×16-16+1=64-15=49