1) делим длину столба на длину части. Переводим смешанное число в неправильную дробь Пример 3 7/9=(3*9+7)/9=34/9 Поскольку это деление простых дробей, то "переворачиваем" делитель и далее умножаем числитель на числитель, а знаменатель на знаменатель 34/9:1/9=34/9*9=34 2) У правильной дроби числитель всегда меньше знаменателя. Составляем неравенство 2х-5<11 2x<16 x<8
3) Число делится на 5, если в разряде единиц у него 5 или 0. Изданного набора наибольшим будет 9725. Число делится на 2, если оно четное, т.е в разряде единиц стоит четное число. Это 2 Наименьшим будет 5792
1) Составим уравнение плоскости (ABC). Оно имеет вид: ax+by+cz+d=0 Плоскость проходит через три точки A, B, C, поэтому справедливо следующее: Для A(4;3;0): 4a+3b+d=0 Для B(3;5;-1): 3a+5b-c+d=0 Для C(1;3;3): a+3b+3c+d=0 Получили систему из трех линейных уравнений с четырьмя неизвестными. Сразу же примем a=1, чтобы система решилась однозначно. (1) 3b+d=-4 (2) 5b-c+d=-3 (3) 3b+3c+d=-1 Умножим второе уравнение на 3 и прибавим к третьему, получим: 18b+4d=-10 или 9b+2d=-5 (4) Умножим первое уравнение на -2 и сложим с (4). -6b+9b-4d+4d=8-5 3b=3, b=1 Далее из (1) выразим d: d = -4-3b=-7 Далее из (2) выразим c: c = 5b+d+3=5-7+3=1. Таким образом, уравнение плоскости имеет вид: x+y+z-7=0. Теперь можно найти расстояние от точки D(5;3;1) до плоскости (ABC): ρ(D, (ABC))=|1*5+1*3+1*1-7|/sqrt(1^2+1^2+1^2)=2/sqrt(3)=2*sqrt(3)/3.
8\2 12\2 3\3
4\2 6\2 1\
2\2 3\3
1 1