Для удобства дадим название каждой стороне прямоугольника (см. рисунок). и распишем, чему равен периметр каждого маленького прямоугольника по часовой стрелке: p1 = 2a + 2c = 24 p2 = 2b + 2c = 28 p3 = 2b + 2d = 16 p4 = 2a + 2d = ? выразим стороны a и d из первого и третьего периметра и подставим их в периметр четвертого прямоугольника: 2a = 24 – 2c 2d = 16 – 2b p4 = 24 – 2c + 16 – 2b мы также можем выразить сторону b через второй периметр, чтобы периметр четвертого прямоугольника был выражен только через одну сторону: 2b = 28 – 2c p4 = 24 – 2c + 16 – (28 – 2c) = 24 – 2c + 16 – 28 + 2c = 24 + 16 – 28 = 12 в результате все неизвестные сократились и был найден периметр четверного прямоугольника, равный 12.
Производная функции f(x)=x^3-3x^2-9x-4 равна: f '(x) = 3x² - 6x - 9. Приравниваем её нулю: 3x² - 6x - 9 = 0, Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=(-6)^2-4*3*(-9)=36-4*3*(-9)=36-12*(-9)=36-(-12*9)=36-(-108)=36+108=144;Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√144-(-6))/(2*3)=(12-(-6))/(2*3)=(12+6)/(2*3)=18/(2*3)=18/6=3;x_2=(-√144-(-6))/(2*3)=(-12-(-6))/(2*3)=(-12+6)/(2*3)=-6/(2*3)=-6/6=-1. Значит, экстремумы в точках: (-1, 1), (3, -31). Минимум функции в точке: x = 3. Максимум функции в точке: x = -1. Возрастает на промежутках (-oo, -1] U [3, oo). Убывает на промежутке [-1, 3].