Пусть M и N – середины рёбер BC и AC данной пирамиды ABCD , все рёбра которой равны a . Тогда MN – средняя линия треугольника ABC . Поэтому MN || AB . Значит, угол между скрещивающимися прямыми DM и AB равен углу между пересекающимися прямыми DM и MN . Так как DM и DN – высоты и медианы равносторонних треугольников BCD и ACD , то
DN = DM = BD sin DBM = BD sin 60o = .
Кроме того, MN = AB = . Пусть K – середина MN . Тогда DK – медиана и высота равнобедренного треугольника DMN . Следовательно,
cos DMN = = = = .
ответ
arccos
( 2 - Х )•( Х - 5 )•( Х + 1 )•( Х - 2 )•2•Х = 0
Корни данного уравнения :
0 ; 2 ; 5 ; ( - 1 )