М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
tetyana5
tetyana5
21.05.2021 16:52 •  Математика

Шесть кг яблок стоят столько же,сколько и три кг апельсинов .апельсины стоят 38 р за кг.сколько стоит кг яблок? с записью дано​

👇
Ответ:
Samal0
Samal0
21.05.2021

яблоки 19 р /кг

Пошаговое объяснение:

дано:

апельсины 38 р / кг

цена 6 кг яблок= цене 3 кг апельсинов

яблоки ? р /кг

38/(6/3)=19

проверка:

6*19=114

3*38=114

4,7(4 оценок)
Открыть все ответы
Ответ:
marinabelousov2
marinabelousov2
21.05.2021
1. Найдите площадь круга, если его диаметр равен 4 см (число \pi сократите до сотых).Площадь круга определяется по формуле:
пи*R^2=пи*(d/2)^2=пи*(4/2)^2=3.14*4=12.56
2. Выполните действие:
4 в минус второй степени / (-4) в минус третьей степени + 0,4 в минус первой - (-3) в нулевой степени=(1/16)/(-1/64)+(4/10) в минус первой - (-3) в нулевой степени=(1/16)/(-1/64)+(10/4) - 1=(1/16)*(-64/1)+(10/4) - 1=-4+(10/4) - 1=-5+2,5=-2,5
3. Упростите выражение:
(А в минус третьей) в минус второй*(А в минус седьмой) в минус первой/А в минус третьей и найдите его значение, при А=0,2.
Воспользуемся свойствами степени:
(А в минус третьей) в минус второй*(А в минус седьмой) в минус первой/А в минус третьей =(А в (минус три* минус два)*(А в (минус семь* минус один)/А в минус третьей =(А в шестой)*(А в седьмой)/А в минус третьей =А в (шесть+семь-минус три) =А в шестнадцатой
(0,2) в шестнадцатой=(1/5) в шестнадцатой=1/152587890625
4. Найдите значение n, удовлетворяющее условию: 7 в минус тринадцатой *7 в восемнадцатой/7 в степени n=1/7(одна седьмая)
7 в (минус тринадцать+ восемнадцать- n)=7 в минус первой
7 в (пять- n)=7 в минус первой
5- n=-1
n=5+1=6
n=6
4,7(63 оценок)
Ответ:
владa2368
владa2368
21.05.2021

7981

Пошаговое объяснение:

Последнюю цифру неизвестного множителя обозначим через x. Тогда, чтобы получилось число, оканчивающееся на 2019, процесс умножения можно представит в виде:

           ₓ9999

          x

           9

         

          . . .

             

   2019

Последней цифрой в произведении 9999·x будет 9, если цифра x=1.

Теперь предпоследнюю цифру неизвестного множителя обозначим через y.

Тогда, чтобы получилось число, оканчивающееся на 2019, процесс умножения можно представит в виде:

           ₓ9999

          y1

             9999

         

          . . .

             

   2019

В сумме цифр 9+* в единичном разряде получится 1, тогда когда *=2. Но только в случае 9·8=72 в единичном разряде получится 2.  Отсюда y=8.

Теперь 3-ю цифру справа неизвестного множителя обозначим через z.

Тогда, чтобы получилось число, оканчивающееся на 2019, процесс умножения можно представит в виде:

           ₓ9999

          z81

            9999

        79992

     

          . . .

             

   2019

В сумме цифр (так как  9+2=11, цифра 1 из десятичного разряде переходит следующий разряд) 9+9+1+*=19+* в единичном разряде получится 0, тогда когда *=1. Но только в случае 9·9=81 в единичном разряде получится 1.  Отсюда z=9.

Теперь 4-ю цифру справа неизвестного множителя обозначим через v.

Тогда, чтобы получилось число, оканчивающееся на 2019, процесс умножения можно представит в виде:

           ₓ9999

          ***t981

            9999

        79992

      89991

 

         . . .

       

   2019

В сумме цифр (так как  9+9+1+1=20, цифра 2 из десятичного разряде переходит следующий разряд) 9+9+9+2+*=29+* в единичном разряде получится 2, тогда когда *=3. Но только в случае 9·7=63 в единичном разряде получится 3.  Отсюда v=7.

Получили число, оканчивающееся на 2019 и поэтому процесс поиска можно останавливать!

Процесс умножения можно представит в виде:

           ₓ9999

            7981

            9999

        79992

      89991

   69993          

  2019

В силу этого заключаем, что наименьшее натуральное число, которое при умножении на 9999 даёт число, оканчивающееся на 2019 - это 7981.

4,4(79 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ