Для того, чтоб найти среднее арифметическое необходимо значения сложить и разделить на количество значений, среди которых необходимо найти среднее арифметическое значение
А) (4 + 6) / 2 = 10 / 2 = 5. Среднее арифметическое чисел 4 и 6 это число 5.
Б) (3 + 1/2) / 2 = 3 1/2 : 2 = 7/2 : 2 = 7/2 * 1/2 = 7/4 = 1 3/4. Среднее арифметическое чисел 3 и 1/2 это число 1 3/4.
В) (1 1/8 + 1/2) / 2 = (9/8 + 1/2) / 2 = (9/8 + 4/8) / 2 = 13/8 : 2 = 13/8 * 1/2 = 13/16. Среднее арифметическое чисел 1 1/8 и 1/2 это число 13/16.
Г) (3 2/3 + 2 1/4) / 2 = (11/3 + 9/4) / 2 = (44/12 + 27/12) / 2 = 71/12 : 2 = 71/12 * 1/2 = 71/24 = 2 23/24. Среднее арифметическое чисел 3 2/3 и 2 1/4 это число 2 23/24.
Пошаговое объяснение:
Пошаговое объяснение:
В каждом из чисел а) 431, б) 124 и в) 234 по две верных цифры.
Если в числе а) 431 неверная цифра 1, то заменив 1 на 2, получим
число 432. Если при этом в числе 432 окажутся все верные цифры, то в числе в) 234 тоже все цифры - верные, но по условию это не так.
Если в числе а) заменить единицу на 5, то получим число 435. Если в числе 435 все цифры - верные, то в числе б) 124 две неверных цифры (нет цифр 3 и 5), но это не так. Следовательно, в числе а) 431 цифра 1 - верная.
Пусть в числе а) 431 неверная цифра 3. Её моно заменить на 2 или на 5. При замене цифры 3 на цифру 2 в числе а) 431 получается число 421, и если в числе 421 все цифры верные, то и в числе б) 124 все цифры верные, но это не так. Пусть тогда при замене цифры 3 на цифру 5 в числе а) в получившемся числе 451 все цифры верные, но тогда в числе в) 234 две неверных цифры, но это не так. Значит цифра 3 в числе а) 431 тоже верная. И поэтому неверной цифрой в числе а) является цифра 4.
Поменять её можно только на цифру 2 или на цифру 5. А так как цифра 4 присутствует во всех трёх числах а), б) и в), то её нужно менять во всех трёх числах. Цифры 5 нет ни в одном из трёх этих чисел. Поэтому, если мы в числе а) заменим 4 на 5, то и числах б) и в) тоже должны заменить 4 на 5. Получим числа 531, 125 и 235. В этих числах не все цифры одинаковые, а этого быть не должно.
Значит, все 3 числа состоят из цифр 1, 2 и 3.
Избавившись о цифры 4 во всех трёх числах, получим числа:
231, 123 и 231 (первое и третье числа одинаковые).
Вернёмся к исходным числам а) 431, б) 124, в) 234. Мы видим, что в числах а) и в) цифра 3 стоит на втором месте. Поэтому 3 - "бык". В числах б) и в) цифра 2 - "корова", в числе б) 1 - "бык". Искомое число - 132.